

GEOCHEMISTRY SCHEDULE OF SERVICES & FEES

EUR

Table of Contents

On-Site Laboratory Services	2	Stable Isotopes.	28
ALS Consulting & Data Analytics	3	Isotopic Analysis and Geochronology	29
REE Powering The Future Now		ENERGY TRANSITION & LIGHT TEOL	
Au-NANO51	5	ENERGY TRANSITION & HIGH TECH	
CORE SERVICES & SPECTRAL MINERALOGY		Lithium Methods, Uncommon Metals	
	_	REE Methods.	
Core Services / ALS CoreViewer™		Uranium, Copper Selective Leaches and Total Copper	
Hyperspectral Imaging & Processing / Quantitative Mine		Chromite and Manganese Ores Methods	33
Identification		SPECIFIC ORES AND COMMODITIES	
Spectral Mineralogy / LithoLens™	9	Iron Ore, Bauxite & Laterites	35
SAMPLE PREPARATION		Phosphates, Potash & Other Ore Grade Basemetals	
		Sodium Peroxide Fusion, Intermediate Level Oxidising	30
Sample Submission / Storage / Miscellaneous	11	Digestion and Basemetals XRF	37
Procedures / Specific Gravity & Bulk Density		3	
Clay Separation / Soil & Sediment Preparation		WHOLE ROCK, LITHOGEOCHEMISTRY, SULPHUR	
pXRF on Prepared Pulps Drill Core, Rocks, and Chips Preparation Packages		& CARBON	
Individual Sample Preparation Methods		Whole Rock Analysis, Trace Elements by Fusion	39
individual Sample Fleparation Methods	14	Complete Characterisation Packages	39
PRECIOUS METALS ANALYSIS		Sulphur & Carbon.	40
Gold by Fire Assay, Metallic Screening	16	CONCENTRATES AND ARD	
Platinum Group Elements, Photon Assay for Gold			
Silver, Precious Metals in Concentrates and Bullion		Concentrate Methods & Industrial Minerals.	
Gold Cyanidation, Process Samples	17	ABA, Humidity Cells & Metal Leaching, NAG	43
Au-NANO51, BLEG and Super Trace Gold	18	ALS Mineralogy	44
Aqua Regia Multi-Element Methods for Soils/Sediments.	18	Quality Accreditations	45
		Terms & Conditions	16
GENERATIVE EXPLORATION			- CONTRACTOR -
Four Acid Super Trace Analysis		Global Geochemistry Locations	47
Portable XRF for Lithogeochemistry		A CONTRACTOR OF THE CONTRACTOR	THE REAL PROPERTY.
Aqua Regia Super Trace Analysis		ALS reserves the right to alter listed prices at any time.	
Selenium in Soils.		400.00	
Conductivity, pH and Neutralisation		6.00	
Halogen Analysis and Ionic Leach™		(SEC.)	
Super Trace Au and Pathfinders / Hydrogeochemistry			
Biogeochemistry	24		
TARGETED EXPLORATION		1000	THE EN
Ultra Trace Methods	26		
Trace and Intermediate Level Methods		10 10 100	STATE OF THE
Resistive Minerals by Fusion			DAMES IN
Halogens and Loss on Ignition			
A Company of the Company of			
	Y		
	J		Y EL
A	-		
			No.
	4	4	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
			STATE OF THE PERSON NAMED IN
The company of the co			100
			The same of the sa
			- SE SE
MISTRY SCHEDULE OF FEES AND SERVICES		and the second	EUR

Purpose

ALS Geochemistry is the world's most trusted testing service dedicated to highvalue geologic data support for the exploration and mining community.

ALS is committed to supplying verifiable, traceable, and defendable data using reliable testing methods and effective data-workflow solutions for our clients.

Safe

Resilient

Curious Committed

Caring

Honest

ALS GEOCHEMISTRY APP

Track your samples anywhere in real-time

On-Site Laboratory Services

safety. assurance. expertise.

Partnering with ALS for an on-site laboratory project ensures that the design, commissioning, and daily laboratory operations will be completed to the safe and high standards that are characteristic of ALS. Trust
ALS to
unearth the
potential of your
mining project with
on-site services
tailored to your
needs.

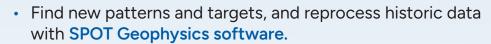
On-site solutions

- Design, build, or upgrade facilities.
- Containerised or permanent dedicated sample preparation facilities.
- Customised analytical laboratories and methods.

Core services on-site or in-lab

- Core sawing & sampling.
- Core Photography.
- Hyperspectral mapping & interpretation.
- CoreViewer™.
- LithoLens™ digital platform.

Key deliverables:


- Unrivalled LIMS for global interconnectivity and offsite quality management.
- Webtrieve[™] access for real-time tracking & monitoring.
- Automated routine data transfer.
- Process Control Alerts[™] to monitor routinely collected and analysed samples.
- Overlimit Alert[™] for notifications when results trigger a user-defined overlimit assay.

Discover the Unseen with ALS Consulting & Data Analytics

collect. interpret. discover.

 Log core with GeoticLog[™] and automate logging workflows with the LithoLens[™] A.I. platform.

· Create predictive insights.

 Collect geological, geochemical and geophysical information with Field Services.

 Access experts in field and structural geology, geotechnical engineering, geophysics, geochemistry and data science.

REE POWERING THE FUTURE NOW

Where Analysis Meets Innovation

ICE PER SAMPLE

Rare Earth Elements (REE) are critical to modern high-tech electronics and for fuelling the green energy transition. ALS has added two new methods to aid in REE discovery.

3	CODE	AN.	ALYTES & RAI	NGE	S (ppm)					PRICE PER SAMPLE
		ΑI	0.05-50%	Eu	0.004-5000	Мо	0.1-10000	Ta	0.005-10000	_
ì		В	10-10000	Fe	0.05-50%	Na	0.05-10%	Tb	0.001-5000	
4		Ba	1-10000	Gd	0.004-5000	Nb	0.02-10000	Th	0.004-10000	
5		Ве	0.03-1000	Hf	0.008-10000	Nd	0.04-10000	Ti	0.0002-20%	
ä		Ca	0.01-50%	Но	0.002-5000	Р	0.002-20%	Tm	0.001-5000	
3	ME-MS71L™ 0.1g sample	Се	0.1-10000	Κ	0.05-25%	Pb	0.5-10000	U	0.01-10000	€46.10
6	o.ig sample	Со	0.2-10000	La	0.1-10000	Pr	0.01-5000	V	1-10000	
á		Cs	0.01-10000	Li	1-10000	Rb	0.05-10000	W	0.2-10000	
٠		Cu	2-10000	Lu	0.001-5000	Sc	0.04-10000	Υ	0.01-10000	
8		Dy	0.003-5000	Mg	0.01-50%	Sm	0.006-5000	Yb	0.001-5000	_
		Er	0.002-5000	Mn	0.005-50%	Sr	0.4-10000	Zr	0.5-10000	_
ă		300		8 A.						

Super-Trace, Total Extraction REE & Refractory Minerals

ALS's new super-trace ME-MS71L™ method employs a unique ammonium bi-fluoride (ABF) decomposition that leverages its high boiling point (239.5° C) to achieve complete recovery of REEs and refractory phases. The ABF chemical digestion coupled with proprietary ICP-MS technology enables detection limits unachievable with traditional flux-based methods.

C	ODE	AN	ALYTES & RAI			PRICE PE				
		ΑI	5-250000	Fe	5-500000	Nb	0.005-500	Ta	0.005-500	
5		В	10-10000	Gd	0.005-1000	Nd	0.05-10000	Tb	0.002-1000	
1		Ва	0.5-10000	Hf	0.005-500	Ni	0.1-10000	Th	0.005-10000	
3		Ве	0.01-1000	Но	0.002-1000	Р	5-10000	Ti	5-100000	
		Ca	20-250000	K	20-100000	Pb	0.05-10000	Tm	0.002-1000	
ME-	-MS19™	Се	0.005-500	La	0.002-10000	Pr	0.004-1000	U	0.005-10000	020.50
30g	g sample	Со	0.005-10000	Li	0.2-10000	Rb	0.05-10000	V	0.4-10000	€39.50
		Cs	0.005-500	Lu	0.002-1000	Sc	0.005-10000	W	0.01-10000	
		Cu	0.04-10000	Mg	1-250000	Si	10-10000	Υ	0.005-500	
		Dy	0.005-1000	Mn	0.2-50000	Sm	0.004-1000	Yb	0.004-1000	
		Er	0.004-1000	Мо	0.01-10000	Sn	0.05-500	Zr	0.01-500	
		Eu	0.004-1000	Na	50-100000	Sr	0.03-10000			

REE Exploration in Clays

Our ME-MS19 ammonium sulphate leach is a useful approach for liberating REEs from ionic clays formed by the natural weathering of REE bearing minerals and adsorption onto clay surfaces. This technique reports REEs that have been physically and chemically adsorbed onto clay surfaces to super-trace detection limits.

REFINE YOUR SCALE

Precision meets performance, revealing the most subtle gold signals.

ALS introduces a new groundbreaking method for super-trace level gold analysis. Until now, detection limit vs. total extraction has been a trade-off. Due to impurities in the flux reagents involved with Fire Assay, the lowest detection level available by that technique is 1 ppb. With cyanide or aqua regia leaches it is possible to achieve lower detection limits, however, the trade-off is a partial gold recovery.

The Au-NANO51 method delivers a 20 parts per trillion detection limit with the advantage of a cutting-edge hydrofluoric acid based digestion for complete gold extraction. With its 10g aliquot, this new method delivers sample size, near-total recovery and lowest detection limits.

CODE	ANALYTE	RANGE (ppb)	DESCRIPTION	PRICE PER SAMPLE
Au-NANO51	Au	0.02-250	Au by Aqua Regia with HF digestion for near-total recovery, and ICP-MS.	€36.70

Core Services & Spectral Mineralogy Our Core Services encompass core handling and warehouse management, core sawing and sampling, and core photography, all within secure and comfortable logging facilities. They may be bundled in any combination at ALS facilities or on-site at your project as needed. These prices reflect in-lab services; for custom on-site quotes, please contact MineSite.Operations@alsglobal.com Our highly-trained core sawing technicians use state of the art computerised saws for precision cutting of most rock types. Friable core may be sawn manually to preserve material in the interval. 6 | GEOCHEMISTRY | SCHEDULE OF FEES AND SERVICES EUR

Core Services

ALS offers a full spectrum of nohassle Core Services that may be bundled in any combination and offered at any of our labs or on-site at your project as needed.

CODE	DESCRIPTION OF SERVICE	PRICE / UNIT
LOG-COREBX	Log in core box for processing.	€2.35 /box
SAW-01	Automated high speed core sawing. Cut sheet/details provided by client.	€14.75 /m
SAW-01FT SAWM-01	<u> </u>	€5.05 /ft
SAWM-01 SAWM-01FT	Manual sawing for friable core. Cut sheet/details provided by client.	€20.80 /m €6.40 /ft
SAM-COR01	Sampling core based on client instructions. Includes bagging sample for further preparation.	€5.05 /sample
SAM-COR01F	Surcharge for friable core. Sampling core based on client instructions. Includes bagging sample for further preparation.	€6.90 /sample
LOG-COR10	Daily rental of secure core logging facilities with full spectrum lights and other amenities.	€70.75 /day
PHO-WET	High resolution core photography. Delivery via secure file transfer or ALS	€5.50 /box
PHO-DRY	CoreViewer™ (see below). Core may be photographed wet or dry based on client preference and requirements.	€5.50 /box
STO-COR10	Long-term storage of core boxes in ALS warehouses.	€1.40 /box/month

CoreViewerTM

Photo archive, core logging support tool, and data integration platform. Integration with major 3D modelling software.

CODE	DESCRIPTION OF SERVICE	PRICE / UNIT
PRC-PHOCLW	Process Wet Photo of Core	€6.90 /box
PRC-PHOCLD	Process Dry Image of Core	€6.90 /box

CoreViewer™ is a fast and secure core photo archive, core logging support tool, and data integration platform accessible over the web via computers and touch-screen tablets.

CoreViewerTM

Using core photos taken by ALS or provided by you over a secure connection, we create continuous depth-registered downhole core image strips. The box photos and core strips are available to you through CoreViewer™, where you can search for specific intervals and graph any kind of downhole geochemical, mineralogical, or geophysical data for comparison against the images.

Your core photos can be accessed in perpetuity using your secure Webtrieve™ login. For those companies using acQuire GIM Suite, CoreViewer™ is available right inside the acQuire Neo application, correlated with drill holes and all associated information in the database.

CoreViewer™ also integrates with major 3D modelling software, including Sequent Leapfrog Geo, Maptek Vulcan and Micromine for deep investigation and verification of exploration, resource and geometallurgical models.

What's in your rocks?

Quantifying common rockforming minerals in routine
mineral exploration has
historically been challenging.
While infrared spectral
mineralogy has supported
applied geoscience, its use has
been largely qualitative and
confined to hydrous mineral
phases. Overcoming limitations
in quantitative applications,
ALS employs machine learning
algorithms trained on an
extensive library of geological
materials. This approach
enables accurate predictions of
quantitative mineralogy using
multi-band infrared spectra
and high-quality multielement
geochemical data.

CODE	ANALYTES		DESCRIPTION	PRICE PER SAMPLE		
	Quartz	Ankerite-Dolomite				
	Plagioclase	Goethite				
	K Feldspar	Hematite				
	Magnetite	Chlorite	- Quantative determination of mineral	€9.00		
ETID MINI	Biotite	Epidote	abundance using FTIR Spectroscopy			
FTIR-MIN	Amphibole	White Mica	and automated interpretation. % Mineral			
	Pyroxene	Pyrite	Abundance reported.			
1	Calcite	FeOx				
	Siderite	Kandite-Kaolinite				
	Spodumene					
	Al ₂ O ₃	C organic	Quantitative determination of bauxite			
	Al ₂ O ₃ avl	Carbonate	- mineral abundance and useful			
FTIR-BAUX	SiO ₂	Sulphate	parameters for bauxite processing using	€9.00		
	Rx SiO ₂	% Magnetic	FTIR spectroscopy and automated	69.00		
	Fe ₂ O ₃	Boehmite	interpretation. % Mineral Abundance			
-	Oxalate	Gibbsite	reported.			

Hyperspectral Imaging & Processing

TerraCore is the only company with commercially available LWIR spectral imaging as well as the standard VNIR & SWIR spectral range to deliver the full spectrum required for rock characterisation.

Results are delivered via CoreViewer™ and IntelliCore®.


	PRICE / UNIT
Core cleaning, core box preparation, and labour may be provided by ALS or TerraCore	By Quotation
	€6.75 /foot
71 1 3 3	€21.80 /metre
using Terracore core imaging systems. Fricing applies to in-lab services.	€6.05 /chip sample
	€9.00 /foot
71 1 3 3	€29.50 /metre
using Terracore core imaging systems. Fricing applies to in-lab services	€8.50 /chip sample
	3.

^{*}Minimum charge of €8,775.00

^{*}Chip trays must be black plastic. ALS can transfer samples to black trays for a fee.

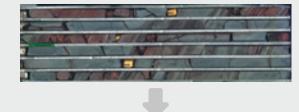
Services include high resolution true colour RGB core photographs, mineral assemblage maps and spectral parameters as image displays, numerical mineralogical parameters and products averaged over 10cm intervals across the length of the core.

Spectral Mineralogy

aiSIRISTM by AusSpec brings a generational leap forward in Al interpretation of TerraSpec® spectral data. Systematic collection of spectral data on dry, coarse crushed rock and drill core can be easily integrated with existing workflows, with routine interpretation enabling delivery of large volumes at fast turnaround times.

CODE	DESCRIPTION OF SERVICE		PRICE PER SAMPLE
HYP-PKG	An economical package combining TerraSpec® 4 HR scanning and aiSIRIS™ expert spectral interpretation. The value of hyperspectral mineralogy in exploration and geometallurgy increases substantially with larger sample volumes. Discounts are available for large submittals covering entire drilling campaigns.	Raw spectral files in ASD or ASCII format, and spreadsheet with mineral assemblages and spectral parameters related to the project geology.	300 samples €7.75 minimum*
INTERP-11	Rapid and accurate interpretation of hyperspectral scans by the aiSIRIS™ expert software.	Spreadsheet with mineral assemblages and spectral parameters related to the project geology.	300 samples €4.45 minimum*
TRSPEC-20	Spectral scan using the TerraSpec® 4 HR spectrometer. Crushed reject or RC chips are recommended as the optimal sample type. *For pulverised samples request TRSPEC-21 Raw spectral files in ASD or ASCII format.		€5.20

The original ASD files as well as the aiSIRIS™ output are reported on every sample for one-to-one comparison.



Unlock geological insights with LithoLens™: deep learning image analytics combined with A.I. and drilling data for precise predictive geological logging.

What is LithoLensTM?

Artifical Intelligence platform to:

- Merge datasets
- Automate logging
- Improve ore/waste characterisation

Sample Preparation

Sample preparation is designed to produce a representative, homogenous sub-sample from the original raw sample. Many variations on the methods and packages in the following pages are available, and sample preparation schemes can be customised to suit any particular project requirement. We have a wide range of expertise available within ALS to help you with any questions you might have.

Samples may be submitted to any of the locations listed on the back pages of this schedule. We can also offer advice on shipping to any of our laboratories by ground, air cargo and air express.

Sample submission forms are available online from alsglobal.com and on request.

For samples submitted for sample preparation only, with no follow-on analysis, ALS may charge 2x the sample preparation price.

Sample Submission

Confidence and security in the chain of custody for your samples as they pass through our system are paramount. Your samples are given a barcode and logged into our proprietary global laboratory information management system on receipt. We encourage clients to barcode samples prior to sending them to our laboratories. Our system will accommodate all major barcode formats.

CODE	DESCRIPTION	APPLICATION	PRICE PER SAMPLE
BAT-01	Workorder/administration fee applied per processing batch.	Single charge for each batch of samples processed.	€48.25/processed batch
LOG-21	Samples received with barcode labels attached to sample bag. Multi-part barcoded sample tags may be purchased from your local lab.	Weigh raw sample and log into global tracking system.	€0.95
LOG-22	Samples received without barcode labels attached.		€1.70
LOG-23	Pulps received with barcode labels attached to sample bag.	Weigh pulp and log into global tracking system. At least one out of every 50 samples is selected at	€0.95
LOG-24	Pulps received without barcode labels attached.	random for routine QC tests (LOG-QC). The default specification is 85% passing 75 microns.	€1.70
LEV-01	Levy for disposal of all types of laboratory waste.	Required for relevant samples in certain jurisdictions.	€0.90
QAR-01	Quarantine charge. AQIS-approved heat treatment and storage.	Required for relevant samples imported into Australia. Additional charges apply for samples over 500g.	€1.00
PKP-21	Sample pick-up services	As requested.	By Quotation

Sample Storage

Materials submitted for analysis are retained free of charge at our laboratories for a limited time, starting from the day we issue the final Certificate of Analysis. Reasonable monthly charges will apply to samples archived for longer periods in our facilities. ALS sample storage facilities provide a secure and organised environment protected from the elements, and all archive locations are included in the laboratory tracking system.

CODE	DESCRIPTION	APPLICATION	PRICE PER SAMPLE
STO-REJ	Monthly archive of coarse rejects.	Longer term archiving of coarse	€0.80 > 45 davs
STO-BLK	Monthly archive of pulps >250g.	rejects and large pulps.	€0.80 > 45 days
STO-PUL	Monthly archive of pulps <250g.	Longer term storage of master pulps.	€0.50 > 45 days
STO-SCR	Monthly archive of screening reject fractions.	Longer term storage of screening reject fractions.	€0.50 > 45 days
RET-21	Handling and retrieval of archived samples.	Stored samples.	By Quotation
DIS-21	Disposal of pulps and coarse fractions.	Pulps and coarse fractions.	By Quotation
RTN-21	Return of samples to client.	Returned samples.	By Quotation

Miscellaneous Procedures

These procedures may be used when specialised preparation or sample compositing is required. An hourly labour charge may apply to time-intensive projects.

CODE	DESCRIPTION	PRICE / UNIT
CMP-21	Compositing of two or more samples. May be done by volume/core length.	€2.90 /sample
CMP-22	Compositing of two or more samples. May be done by weight.	€5.10 /sample
WSH-21	Clean crushers with "barren" material after each, or designated samples as an additional cleaning step between mineralised samples.	€3.05 /sample
WSH-22	Clean pulverisers with "barren" material after each, or designated samples as an additional cleaning step between mineralised samples.	€3.90 /sample
TRA-21	Transfer sample to drying tray or new sample bag for samples received in containers unsuitable for laboratory storage, or requiring tray drying.	€1.50 /sample
BAG-01	Bagging large pulps for storage for large pulps/bulk masters.	€1.70 /sample
HOM-01	Homogenise stored or composited samples by light pulverising.	€5.50 /sample
SCR-51	Screening of samples to any number of standard size fractions, as specified by the client. Weight of undersize fraction reported for each screen size. Fraction sizing or custom screening as requested.	€7.30 /screen size

Specific Gravity & Bulk Density

Specific gravity and bulk density of ores are important parameters that are often under-characterised in the determination of grade and tonnage of deposits.

CODE	DESCRIPTION	RANGE	PRICE PER SAMPLE
OA-GRA08*	Specific Gravity on solid objects.	Reported as a ratio.	€14.90
OA-GRA08b	Specific Gravity on pulps using pycnometer.	Reported as a ratio.	€14.90
OA-GRA09*	Bulk Density by water displacement.	0.01 – 20g/cm ³	€14.90
OA-GRA09a*	Bulk Density after wax coating (wax removal not included).	0.01 – 20g/cm ³	€23.55

^{*}For friable or broken core surcharges may apply.

Clay Separation

The clay fraction in soils acts as a trap for elements migrating to the surface from depth, and may be used to enhance subtle anomalies.

CODE	DESCRIPTION	PRICE PER SAMPLE
SCR-CLAY	Separation of the clay fraction (-2 to -10 micron) from screened soils. Minimum 300g of sieved soil required.	€26.25

Note: Clay samples may require drying and screening (-180 micron or -106 micron) prior to clay separation on the minus fraction. Please discuss suitable options for your program with local client services staff.

Soil & Sediment Preparation Package

Drying temperature is kept low to avoid the loss of mercury.

CODE	DESCRIPTION	PRICE PER SAMPLE
PREP-41	Dry at <60°C/140°F, sieve sample to -180 micron (80 mesh). Retain both fractions. Application: Soil or sediment samples.	€2.65/sample + €3.40/kg

^{*}Other screen sizes available on request.

Portable XRF on **Prepared Pulps**

ALS offers portable XRF analysis on pulps immediately after sample preparation at the prep lab closest to your project.

15g sample required for pXRF analysis.

CODE	ANALYTES & LOWER LIMITS (ppm)	PRICE PER SAMPLE
pXRF-30	As 50 Ca 0.5% Cr 100 Cu 50 Fe 0.5% Mn 100	€6.30
pxkr-30	Ni 50 Pb 50 S 0.1% Zn 50	60.30
~VDE 24	Portable XRF scan of an unmineralised pulverised sample. Ranges:	€4.75
pXRF-34	Si 0.5%-47% Ti 0.1%-60% Zr 5ppm-5%	€4./5
pXRF-VAL	Customised pXRF method set-up including project and/or matrix specific validation	By Quotation

^{*}pXRF methods available as an add-on to multi-element analysis only.

Portable XRF for Indicative Analysis

Portable XRF is useful for screening large numbers of intermediate to ore grade elements quickly and cost effectively while awaiting standard lab analyses. It can also be used to determine Si and acid-resistive Ti and Zr as a complement to multielement methods and a proxy for rock characterisation.

For a successful pXRF scan it is important that calibration is matched to specific $\hbox{\it custom calibration for pXRF on project-specific sample suites, with our rigorous}$ quality standards and XRF expertise ensuring accurate, reliable results. The pXRF project is remote. Contact your local client services team for more information.

Drill Core, Rocks and Chips Preparation Packages

All packages include sample login to the laboratory tracking system and weighing. Excessively wet samples may require additional drying for a surcharge. It is very helpful to advise us of mineralised samples that may require special equipment cleaning cycles.

CODE	DESCRIPTION	APPLICATION	PRICE PER SAMPLE
CRU-21^	Coarse crushing of rock chip and drill samples.	Used as a preliminary step before fine crushing of larger sample sizes. No QC is performed for this method. If QC is required request CRU-21q for >70% passing 6mm.	€3.25 + €1.45/kg
PREP-31*^	Crush to 70% less than 2mm, riffle split off 250g, pulverise split to better than 85% passing 75 microns.		€9.30 + €1.00/kg
PREP-31Y*^	Crusher/rotary splitter combo - Crush to 70% less than 2mm, rotary split off 250g, pulverise split to better than 85% passing 75 microns.	Drill core, rock and chip samples.	€9.30 + €1.00/kg
PREP-31B*^	Crush to 70% less than 2mm, riffle split off 1kg, pulverise split to better than 85% passing 75 microns.		€11.20 + €1.00/kg
PREP-31BY*^	Crusher/rotary splitter combo - Crush to 70% less than 2mm, rotary split off 1kg, pulverise split to better than 85% passing 75 microns.		€11.20 + €1.00/kg
PREP-31D*^	Crush to 90% less than 2mm, riffle split off 1kg, pulverise split to better than 85% passing 75 microns.	Drill core and rocks containing high- grade or coarse gold and/or silver.	€15.45 + €2.15/kg
PREP-22*^	Coarse crush sample, pulverise entire sample to better than 85% passing 75 microns.	Drill core, rock and chip samples up to 3kg.	€14.50 + €3.75/kg
PREP-32*^	Crush to >70% less than 2mm, riffle split, pulverise 1.5kg to 85% passing 75 microns.	Drill core, rock and chip samples.	€13.80 + €1.00/kg

^{*} Packages with common split size and particle fineness are listed. Please contact your local client services for alternatives. ^Surcharges are applicable to whole core.

Individual Sample Preparation Procedures

The following procedures can be used either separately or combined in a package in order to meet specific needs regarding sample size and composition. Most of these procedures are charged at a rate that is based on sample weight.

Multiple screen sizes and screening methods are available. Please contact your local client services group for options.

Drying

CODE	DESCRIPTION	APPLICATION	PRICE PER SAMPLE
DRY-21	Drying of excessively wet samples in drying ovens.	Default drying procedure for most rock chip and drill samples.	€3.75 + €0.95 /kg
DRY-22	Drying of excessively wet samples in drying ovens that are controlled to a maximum temperature of 60°C.	Most soil and sediment samples that are analysed for volatile elements.	€3.85 + €1.00 /kg
DRY-23	Air-drying of samples.	Selective Leach procedures and others.	€3.85 + <i>€1.00</i> /kg

Crushing

CODE	DESCRIPTION	APPLICATION	PRICE PER SAMPLE
CRU-21*	Coarse crushing of rock chip and drill samples.	Used as a preliminary step before fine crushing of larger sample sizes. No QC is performed for this method. If QC is required request CRU-21q for >70% passing 6mm.	€3.25 + <i>€1.45</i> /kg
CRU-31*	Fine crushing of rock chip and drill samples to 70% passing 2mm.	Standard preparation procedure for samples where a representative split will be pulverised.	€3.55 + €0.95/kg
CRU-36*	Fine crushing of rock chip and drill samples to 85% passing 2mm.	Option for when a finer crush is desired.	€3.80 + €1.35 /kg
CRU-32* Fine crushing of rock chip and drill samples to 90% passing 2mm.		Option for when a finer crush is desired.	€4.55 + €1.60 /kg

^{*}Note: Methods with common fineness requirements listed. Additional options available.

Splitting

CODE	DESCRIPTION	APPLICATION	PRICE PER SAMPLE
SPL-21*	Split sample using a riffle splitter.	Standard splitting procedure.	€2.40 + €0.90 /kg
SPL-22*	Split sample using a rotary splitter.	Data and Millian and an	€3.95 + €0.95/kg
SPL-22Y	Split sample using a Boyd crusher/rotary splitter combination.	Rotary splitting procedure.	€3.50 + €0.90/kg
SPL-34	Split a received pulp sample for various analysis.	Pulp splitting procedure.	€0.90

^{*}Note: For sample splitting and return or archive without analysis add suffix X to the codes above. Additional costs are incurred.

Pulverising

	CODE	DESCRIPTION	APPLICATION	PRICE PER SAMPLE
	PUL-31*	Pulverise a split or total sample up to 250g to 85% passing 75 microns.	Default procedure for samples that are finely crushed and split to 250g or less.	€5.55
	PUL-32*	Pulverise a 1,000g split to 85% passing 75 microns.	Large sample size to mitigate	€8.10
	PUL-32a*	Pulverise a 1,000g split to 90% passing 75 microns.	nugget effect.	€9.20
	PUL-21*	Pulverise entire sample to 85% passing 75 microns.	Appropriate for samples up to 3kg.	€13.05
	PUL-23*	Pulverise up to 3kg to 85% passing 75 microns. For samples >3kg additional costs are incurred to split the sample prior to pulverising and retaining the remainder.	Appropriate for RC drill chip samples	€9.65
	Pulverise up to 3kg to 85% passing 75 microns. For samples >3kg an additional cost is incurred to split the sample prior to pulverising. The remainder is discarded.		not requiring crushing.	€9.65
PUL-51* Pulverise up to 100g concentrate sample to 85% passing 75 microns.			Cost includes careful cleaning of the pulverising bowl after grinding.	€23.65
	PUL-34* Pulverise 200g to 85% passing 75 microns		Applicable for high grade material.	€23.65

^{*} Surcharges may apply to samples requiring excessively long pulverisation times required for some sample types.

A variety of different pulverising bowls made of diverse media are available on request. All ALS equipment is standardised as low Cr-steel, however, substitution of bowls may be required when specific element contamination is a concern. Bowls available include tungsten carbide, agate and zirconium.

Other options are available for all stages of sample preparation. Please contact ALS with your specific requirements.

^{*}Note 2: Surcharges are applicable for whole core.

Gold by Fire Assay

An optimal fire assay flux recipe and rigorous quality control program easily handle problem materials including chromite, base metal sulphides and oxides, selenides, and tellurides.

Choice of crushing fineness, splitting technique and pulp size can all affect the analytical outcome of fire assay gold methods. Discuss with your local ALS laboratory for more information.

CODE	ANALYTE	RANGE (ppm)	DESCRIPTION	PRICE PER SAMPLE
Trace Level				
Au-ICP21		0.001.10	Au by fire assay and ICP-AES.	€20.35
Au-ICP22		0.001-10	30g sample 50g sample	€22.60
Au-AA23	Au	0.005.40	Au by fire assay and AAS.	€19.60
Au-AA24		0.005-10	30g sample 50g sample	€21.95
Ore Grade				
Au-AA25		0.01.100	Au by fire assay and AAS.	€20.00
Au-AA26		0.01-100	30g sample 50g sample	€22.15
Au-GRA21	Au	0.05.10000	Au by fire assay and gravimetric finish.	€23.75
Au-GRA22		0.05-10000	30g sample 50g sample	€28.10

^{*} For Au and Ag, request ME-GRA21 (30g) or ME-GRA22 (50g).

Metallic Screening

When samples contain coarse gold, the metallic screening procedure is recommended for accurate results.

CODE	ANALYTE	RANGE (ppm)	DESCRIPTION	PRICE PER SAMPLE
Au_SCR21	Au	0.05-100000 (0.01-1000 mg)	1kg pulp screened to 100 microns, Other screen sizes available. Duplicate 30g assay on screen undersize. Assay of entire oversize fraction.	€66.10
Au_SCR24	Au		1kg pulp screened to 100 microns. Other screen sizes available. Duplicate 50g assay on screen undersize. Assay of entire oversize fraction.	€70.45
Au_SCR24B	Au		1-2kg pulp screened to 100 microns. Duplicate 50g assay on screen undersize. Assay of entire oversize fraction.	€95.80
Au_SCR24C	Au		2-3kg pulp screened to 100 microns. Duplicate 50g assay on screen undersize. Assay of entire oversize fraction.	€121.10

^{*} Options available for various sample weights, screen sizes and undersize assays.

Platinum Group Elements

Platinum, palladium, rhodium and gold may be determined by standard lead oxide collection fire assay and ICP-MS or ICP-AES finish.

For the full suite of platinum group elements, nickel sulphide collection fire assay must be used for a quantitative analysis.

^{*}Gold is under-reported by this method due to the collection by nickel sulphide.

CODE	ANALYTE	RANGE (ppm)	DESCRIPTION	PRICE PER SAMPLE
Trace Level				
PGM-MS23L	Pt Pd Au	0.0001-1 0.0002-1 0.001-1	Super trace Pt, Pd and Au by fire assay and ICP-MS finish. 30g nominal sample weight	€29.55
PGM-MS23	Pt	0.0005-1	Pt, Pd and Au by fire assay and ICP-MS finish.	€25.75
PGM-MS24	Pd Au	0.001-1 0.001-1	30g nominal sample weight 50g nominal sample weight	€28.55
Rh-MS25	Rh	0.001-1	Rh by fire assay, gold collection and ICP-MS. 30g nominal sample weight	€39.80
PGM-MS25NS	Pt, Pd Au*, Rh Ir Os Ru	0.002-15 0.002-5 0.001-5 0.002-1 0.003-5	Pt, Pd, Ir, Os, Rh, Ru by nickel sulphide collection fire assay and ICP-MS finish. 30g nominal sample weight. *Au referential value available upon request.	€175.50
PGM-ICP23	Pt	0.005-10	Pt, Pd and Au by fire assay and ICP-AES finish.	€24.50
PGM-ICP24	Pd Au	0.001-10 0.001-10	30g nominal sample weight 50g nominal sample weight	€27.45
Ore Grade				
PGM-ICP27	Pt Pd Au	0.01-100 0.01-100 0.01-100	Pt, Pd and Au by fire assay and ICP-AES finish. 30g nominal sample weight	€25.90

PhotonAssay

A large, 500g sample analysis size makes this technique well-suited for coarse gold mineralisation.

CODE	ANALYTE	RANGE (ppm)	DESCRIPTION	PRICE PER SAMPLE
Au-PA01	Au	0.03-350	Au by PhotonAssay analysis on 500g of crushed sample	€25.45

^{*}Presence of Th, U or Ba cause interference and can result in unreportable data. In the presence of these elements, fire assay is a more appropriate choice.

Please contact Client Services for information on whether this technique is appropriate for your project.

Silver

Trace level and low-grade silver samples may be analysed by acid digestion for maximum sensitivity and precision. Multielement packages including Ag are listed in the Targeted Exploration section.

Because silver can suffer from nugget effect, occasional duplicate analysis may help detect sampling error at these low levels. At higher grades, fire assay with larger nominal weights may be preferable.

CODE	ANALYTE	RANGE (ppm)	DESCRIPTION	PRICE PER SAMPLE	
Trace Level					
Ag-ICP41 (Ag-AA45)	۸	0.2-100	Ag by aqua regia digestion and ICP-AES or AAS. 0.5g sample	€7.40	
Ag-ICP61 (Ag-AA61)	- Ag	0.5-100	Ag by HE-HNO -HCIO digestion HCI		
Ore Grade					
Ag-OG46 (Ag-AA46)		1-1500	Ag by aqua regia digestion, ICP-AES or AAS finish. 0.5g sample	€12.70	
Ag-OG62 (Ag-AA62)	Ag	1-1500	Ag by HF-HNO ₃ -HCIO ₄ digestion with HCI leach, ICP-AES or AAS finish. 0.4g sample	€15.55	
Ag-GRA21		5.40000	Ag by fire assay and gravimetric finish.	€25.20	
Ag-GRA22		5-10000	30g sample 50g sample	€29.50	
ME-GRA21	Au	0.05-10000	Au and Ag by fire assay and gravimetric finish.	€32.10	
ME-GRA22 Ag		5-10000	30g sample 50g sample	€35.05	

Precious Metals in Concentrates and Bullion

High precision analysis and umpire assay of precious metals in concentrates and bullion are performed by the most senior fire assay technicians and checked by certified assayers to ensure accuracy.

Minimum sample weight required varies, contact your local lab.

CODE	ANALYTE	RANGE (ppm)	DESCRIPTION	PRICE PER SAMPLE
Concentrates				
Au-CON01 Ag-CON01	Au Ag	0.07-999985 0.7-995000	Au and Ag by fire assay and gravimetric finish.	€110.00 each
Pt-CON01 Pd-CON01 Rh-CON01	Pt, Pd, Rh	0.07-1000000	Pt, Pd and Rh by fire assay and AAS finish.	€110.00 each
Bullion				
Au-GRA24 Ag-GRA24	Au Ag	0.01-1000 fineness 0.01-1000 fineness	Routine bullion assays by fire assay with gravimetric finish.	€154.50 each
Au-UMP20 Ag-UMP20	Au Ag	0.07-1000000 0.7-1000000	Umpire assay for bullion samples by fire assay with gravimetric finish.	€251.95 each
Pt-UMP20 Pd-UMP20 Rh-UMP20	Pt, Pd, Rh	0.07-1000000	Umpire assay for bullion samples by fire assay with gravimetric finish.	€251.95 each

Gold Cyanidation

In mining and exploration applications, cyanide leach tests are used to establish the potential cyanide extraction efficiency for gold and silver.

High concentrations of some sulphides, particularly chalcopyrite, can negatively impact gold extraction. For samples that are expected to contain high copper sulphide concentration please contact ALS for suggestions.

CODE	ANALYTE	RANGE (ppm)	DESCRIPTION	PRICE PER SAMPLE
Au-AA13 Ag-AA13 Cu-AA13	Au Ag Cu	0.03-50 0.03-350 0.1-2000	Au, Ag, Cu by cyanide leach with AAS finish. 30g sample	€11.35 + €5.55/element
Au-AA14	Au	0.01-200	Au by cyanide leach with AAS finish. 12hr Leach. Up to 1kg sample	€35.00
Au-AA15a Au-AA15b Au-AA15c Au-AA15d	Au	0.001-125	Au by accelerated cyanide leach using LeachWELL Assay Tabs™ with AAS finish. 4hr Leach. 500g sample request Au-AA15a For 1kg request Au-AA15b For 2kg request Au-AA15c For 3kg request Au-AA15d	€43.45 (500g) €46.75 (1kg) €48.60 (2kg) €53.70 (3kg)
Au-AA31 Au-AA31a	Au	0.03-500	Au Preg Rob Leach with Gold Spike. Au Preg Rob Leach without Gold Spike. 10g sample per method	€13.00 each

Note: Cyanide disposal fees apply in some countries. For Super Trace Au with cyanide leach see methods on page 18.

Process Samples

Includes gold in cyanide liquors or captured on activated carbon.

Minimum sample weight required varies, contact your local lab.

CODE	ANALYTE	RANGE (ppm)	DESCRIPTION	PRICE PER SAMPLE
Au-AA16	Au	0.001-2500mg/L	Au in cyanide liquor by extraction with AAS finish.	€27.85
Au-AA44	Au	1-10000	Au on carbon by ashing, aqua regia digestion and AAS. Duplicate analysis.	€44.90

Super Trace Near Total recovery for Au

Sample size, total recovery and lowest detection limits, the perfecet balance for Au exploration at ppt levels.

Bulk I	_each	
Extra	ctable	Gold

BLEG is used where cyanide leaching from a stream sediment sample may detect gold anomalies that would otherwise go unnoticed.

Prices for cyanide leaching of samples over 1kg by quotation.

Super Trace Au and Multi-Element in Soils & Sediments

ALS offers the lowest detection limits in the industry for gold in soils and sediments by both cyanide and aqua regia digestion, using our innovative super trace analytical methodology.

Full multi-element geochemical suites may be read from the same digest solution as our aqua regia and ICP-MS super trace gold method. This package mirrors our ME-MS41L™ method, with slight adjustments made to accommodate the larger nominal sample weight necessary for representative gold analysis.

Low Level Au and Multi-Element in Soils & Sediments

Our trace level methods by aqua regia digestion and ICP-MS finish are excellent for regolith, where gold anomalies indicating mineralisation below surface are well-characterised. Aqua regia dissolves native gold as well as gold bound in sulphide minerals; however, depending on the composition of the soil, gold determined by this method may or may not match recovery from fire assay methods.

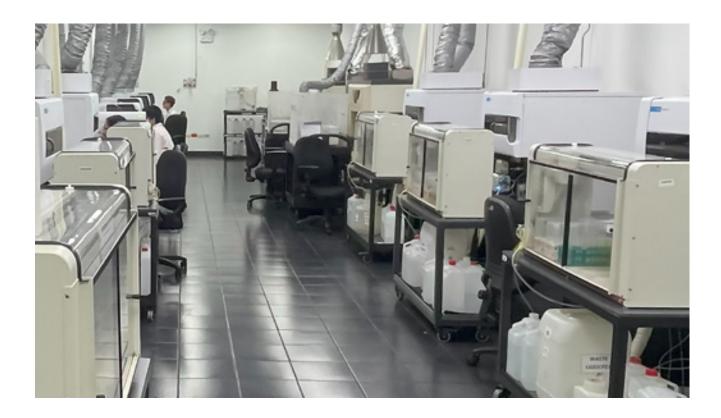
As with our super trace methods, multi-element packages can be read from the same digestion solution as trace level gold for a complete exploration tool.

CODE	ANALYTE	RANGE (ppb)	DESCRIPTION	PRICE PER SAMPLE
Au-NANO51	Au	0.02-250	Au by aqua regia with HF digestion for near- total recovery, with ICP-MS finish. 10g sample	€36.70

CODE	ANALYTE	RANGE (ppm)	DESCRIPTION	PRICE PER SAMPLE	
Au-CN12* Au-AA12**	Au	0.0001-10	BLEG—ICP-MS finish. BLEG—extraction AA finish. Up to 1kg sample	€43.80	
Au-CN11*	Au	0.001-50	BLEG – ICP-MS finish.	000.10	
Au-AA11	Au	0.001-10	BLEG – extraction AA finish. Up to 500g sample	€29.10	

^{*} Silver and copper may also be reported by these methods for an additional fee.

^{**} Silver, Copper, Lead and Zinc may also be reported for an additional fee.


CODE	ANALYTE	RANGE (ppb)	DESCRIPTION	PRICE PER SAMPLE
Au-CN43™	٨	0.005.1000	Au by cyanide extraction with ICP-MS finish.	€27.50
Au-CN44™	Au	0.005-1000	25g sample 50g sample	€30.50
Au-ST43™		0.1-100	Au by aqua regia extraction with ICP-MS finish.	€20.15
Au-ST44™	· Au		25g sample 50g sample	€22.20

CODE	AN	ALYTES & RAI	PRICE PER SAMPLE						
	Au	0.0001-1	Cu	0.01-10000	Nb	0.002-500	Ta	0.005-500	
	Ag	0.001-100	Fe	0.001-50%	Ni	0.02-10000	Те	0.001-500	
	Al	0.01-25%	Ga	0.004-10000	Р	0.0005-1%	Th	0.0005-10000	
	As	0.01-10000	Ge	0.005-500	Pb	0.005-10000	Ti	0.0001-10%	
	В	2-10000	Hf	0.002-500	Pd	0.001-100	TI	0.0005-10000	
AuME-ST43™	Ва	0.05-10000	Hg	0.002-10000	Pt	0.001-100	U	0.0005-2500	
25g sample	Ве	0.005-1000	ln	0.005-500	Rb	0.005-10000	V	0.05-10000	€46.35
AuMF-ST44™	Bi	0.0005-10000	Κ	0.01-10%	Re	0.0002-50	W	0.001-10000	€49.10
50g sample	Ca	0.01-25%	La	0.002-10000	S	0.002-10%	Υ	0.001-5000	0.00
	Cd	0.001-2000	Li	0.1-10000	Sb	0.002-10000	Zn	0.1-10000	
	Се	0.001-10000	Mg	0.01-25%	Sc	0.005-10000	Zr	0.01-500	
	Со	0.001-10000	Mn	0.1-50000	Se	0.002-1000			
	Cr	0.01-10000	Мо	0.002-10000	Sn	0.01-500			
	Cs	0.001-500	Na	0.001-10%	Sr	0.01-10000			

CODE	ANALYTE	RANGE (ppm)	DESCRIPTION	PRICE PER SAMPLE
Trace Level				
Au-TL43	۸.,	0.001.1	Au by aqua regia extraction with ICP-MS finish.	€17.10
Au-TL44	- Au	0.001-1	25g sample 50g sample	€19.15
Intermediate	Grade			
Au-OG43	^		Au by aqua regia extraction with ICP-MS finish.	€16.85
Au-OG44	Au	0.01-100	25g sample 50g sample	€18.30

CODE	AN.	ALYTES & RAI	PRICE PER SAMPLE						
	Au	0.001-1	Cs	0.05-500	Мо	0.05-10000	Sr	0.2-10000	
	Ag	0.01-100	Cu	0.2-10000	Na	0.01-10%	Ta	0.01-500	
	Al	0.01-25%	Fe	0.01-50%	Nb	0.05-500	Те	0.01-500	
	As	0.1-10000	Ga	0.05-10000	Ni	0.2-10000	Th	0.2-10000	
AuMF-TL43™	В	10-10000	Ge	0.05-500	Р	10-10000	Ti	0.005-10%	
25g sample	Ва	10-10000	Hf	0.02-500	Pb	0.2-10000	TI	0.02-10000	€31.25
3 ,	Ве	0.05-1000	Hg	0.01-10000	Rb	0.1-10000	U	0.05-10000	
AuME-TL44™	Bi	0.01-10000	In	0.005-500	Re	0.001-50	V	1-10000	€33.80
50g sample	Ca	0.01-25%	Κ	0.01-10%	S	0.01-10%	W	0.05-10000	
	Cd	0.01-2000	La	0.2-10000	Sb	0.05-10000	Υ	0.05-10000	
	Се	0.02-10000	Li	0.1-10000	Sc	0.1-10000	Zn	2-10000	
	Со	0.1-10000	Mg	0.01-25%	Se	0.2-1000	Zr	0.5-500	
	Cr	1-10000	Mn	5-50000	Sn	0.2-500			

Four Acid Super Trace Analysis

This super trace package is suitable for regional drilling, trenching and hand samples in unmineralised rocks, and can also be used effectively in areas of thick regolith for bedrock mapping. ALS has lowered the detection limits on key pathfinder elements such as As, Sb, Se and TI to near or below average crustal abundance, revealing anomalous patterns at levels previously unattainable due to technical limitations.

The rare earth elements and lead isotopes are available as add-ons to expand the utility of the method in greenfields exploration.

CODE	AN	ALYTES & RAI		PRICE PER SAMPLE						
	Ag	0.002-100	Cu	0.02-10000	Na	0.001-10%	Sr	0.02-10000		
	Al	0.01-50%	Fe	0.002-50%	Nb	0.005-500	Ta	0.01-500		
	As	0.02-10000	Ga	0.05-10000	Ni	0.08-10000	Те	0.005-500		
	Ва	1-10000	Ge	0.05-500	Р	0.001-1%	Th	0.004-10000		
	Ве	0.02-1000	Hf	0.004-500	Pb	0.01-10000	Ti	0.001-10%		
ME-MS61L™	Bi	0.002-10000	In	0.005-500	Rb	0.02-10000	TI	0.002-10000	€48.20	
0.25g sample	Ca	0.01-50%	Κ	0.01-10%	Re	0.0004-50	U	0.01-10000		
	Cd	0.005-1000	La	0.005-10000	S	0.01-10%	V	0.1-10000		
	Се	0.01-10000	Li	0.2-10000	Sb	0.02-10000	W	0.008-10000		
	Со	0.005-10000	Mg	0.01-50%	Sc	0.01-10000	Υ	0.01-500		
	Cr	0.3-10000	Mn	0.2-100000	Se	0.006-1000	Zn	0.2-10000		
	Cs	0.01-10000	Мо	0.02-10000	Sn	0.02-500	Zr	0.1-500		
	Dy	0.005-1000	Gd	0.005-1000	Nd	0.005-1000	Tb	0.002-1000		
MS61L-REE™	Er	0.004-1000	Но	0.002-1000	Pr	0.004-1000	Tm	0.002-1000	€7.95 Add-on only	
	Eu	0.004-1000	Lu	0.002-1000	Sm	0.004-1000	Yb	0.004-1000		
MS61L-PbIS™	MS61L-PbISTM 204Pb 0.0			0.01-10000	²⁰⁷ Pb	0.01-10000	²⁰⁸ Pb	0.01-10000	€11.90 Add-on only	

Portable XRF for Lithogeochemistry

The crucial lithogeochemical elements - silicon, titanium, and zirconium - may be added to any ALS four acid method for a more complete element suite.

CODE	DESCRIPTION	PRICE PER SAMPLE
pXRF-34	Portable XRF scan of an unmineralised pulverised sample. Ranges: Si 0.5%-47% Ti 0.1%-60% Zr 5ppm-5% 15g sample	Add-on to €4.75 multi-element analysis only

Aqua Regia Super Trace Analysis

Aqua regia digestion with super trace ICP-MS analysis provides extremely low detection limits for the analysis of soils and sediments; useful for regional and deep cover exploration.

The rare earth elements and lead isotope concentrations add new dimensions to super trace data. REEs may be useful pathfinders despite reflecting only the labile component, while Pb isotopic signatures can be used in fingerprinting and hydrothermal fluid history.

CODE	AN.	ALYTES & RAN	NGE:	S (ppm)					PRICE PER SAMPLE
	Ag	0.001-100	Cu	0.01-10000	Nb	0.002-500	Ta	0.005-500	
	Al	0.01-25%	Fe	0.001-50%	Ni	0.04-10000	Те	0.003-500	
	As	0.01-10000	Ga	0.004-10000	Р	0.001-1%	Th	0.002-10000	
	Au	0.0002-25	Ge	0.005-500	Pb	0.005-10000	Ti	0.001-10%	
	В	10-10000	Hf	0.002-500	Pd	0.001-25	TI	0.001-10000	
	Ва	0.5-10000	Hg	0.004-10000	Pt	0.002-25	U	0.005-10000	
ME-MS41LTM*	Ве	0.01-1000	In	0.005-500	Rb	0.005-10000	V	0.1-10000	020.15
0.5g sample	Bi	0.0005-10000	K	0.01-10%	Re	0.0002-50	W	0.001-10000	€39.15
	Ca	0.01-25%	La	0.002-10000	S	0.01-10%	Υ	0.003-500	
	Cd	0.001-1000	Li	0.1-10000	Sb	0.005-10000	Zn	0.1-10000	
	Се	0.003-500	Mg	0.01-25%	Sc	0.005-10000	Zr	0.01-500	
	Со	0.001-10000	Mn	0.1-50000	Se	0.003-1000			
	Cr	0.01-10000	Мо	0.01-10000	Sn	0.01-500			
	Cs	0.005-500	Na	0.001-10%	Sr	0.01-10000			
	Dy	0.002-1000	Gd	0.002-1000	Nd	0.002-1000	Tb	0.001-1000	
MS41L-REE™	Er	0.002-1000	Но	0.001-1000	Pr	0.002-1000	Tm	0.001-1000	€7.95 Add-on only
	Eu	0.002-1000	Lu	0.001-1000	Sm	0.002-1000	Yb	0.002-1000	
MS41L-PbIS™	²⁰⁴ Pb	0.005-10000	²⁰⁶ Pb	0.005-10000	²⁰⁷ Pb	0.005-10000	²⁰⁸ Pb	0.005-10000	€11.90 Add-on only

^{*} Gold determinations by this method are semi-quantitative due to the small sample weight used. A weak aqua regia (1:1 ratio HCI:HNO,) digestion is also available, use code ME-MS41W $^{\text{TM}}$. For Au with multi-element using a 25g or 50g charge, please use AuME-ST43 $^{\text{TM}}$ or AuME-ST44 $^{\text{TM}}$.

Selenium in Soils

Se at this level holds information for exploration vectoring as well as environmental baselines.

CODE	ANA	LYTE & RANGE (ppm)	DESCRIPTION	PRICE PER SAMPLE
Se-MS46	Se	0.003-100	Aqua regia digestion and ICP-MS analysis.25g sample	€19.80

Conductivity, pH and Neutralisation

These methods provide crucial information for mineral processing, environmental assessment and exploration.

CODE	ANALYTES &	RANGES	DESCRIPTION	PRICE PER SAMPLE		
OA-GRA04	Acid Insoluble	0.01%-100%	Acid insoluble content. 1g sample.	€16.90		
OA-ELEO3	рН	0.1-14	pH on 1:10 sample to water ratio. 5g sample	€11.35		
OA-ELEO4	Conductivity	1-100,000µS/cm	Specific conductivity on 1:10 sample to water ratio. 5g sample	€14.20		
OA-ELE05	Soil pH	0.1-14	Soil pH on 1:1 sample to water ratio. 20g sample	€14.20		
OA-ELE05AP	Soil pH and soil acid neutralisation	0.1-14	Add on to soil pH. Addition of HCl and pH re-measured.	€5.55 add-on to soil pH only		
OA-ELE06	Soil Conductivity	1-100,000µS/cm	Soil conductivity on 1:1 sample to water ratio. 20g sample	€9.80		
OA-ELE07	Paste pH	0.1-14	Paste pH on 10g sample saturated with water.	€8.55		
OA-ELEO7AP	Paste pH and soil acid neutralisation	0.1-14	Add on to paste pH. Addition of HCl to paste and pH re-measured.	€5.55 add-on to paste pH only		

Halogen Analysis

Fluorine, chlorine, bromine and iodine hold significant promise in exploration, since many metals are transported through the crust as halide complexes in hydrothermal fluids.

Soil, vegetation or water may be analysed by this method.

CODE	DESCRIPTION	PRICE PER SAMPLE
VEG-ASH01	Vegetation sample is ashed at 475°C for 24 hours. Pre- and post-ashing weights are reported. Average ash yields are 2-4% for species commonly used in exploration surveys. Minimum sample weight required 100g.	€9.75
HAL-PREP01	Sample pre-treatment for super trace halogens analysis. Required for soils. Minimum sample weight required varies, contact your local lab to discuss your project.	€13.45

CODE	AN	ALYTES & DETEC	стю	N LIMITS (ppm)	DESCRIPTION	PRICE PER SAMPLE
NAT LIALOATM	F	0.05	CI	0.1	De-ionised water leach with	046.75
ME-HAL01™	Br	0.02	ı	0.002	ICP-MS & ion chromatograph analysis.	€46.75

For halogen analysis on vegetation use code ME-HAL01a[™] and for water use code ME-HAL01w[™].

Ionic Leach™

Ionic Leach™ is designed to enhance the most subtle labile geochemical anomalies for a wide range of commodities. It is a static sodium cyanide leach using the chelating agents ammonium chloride, citric acid and EDTA with the leachant buffered at an alkaline pH of 8.5.

Nominal sample weight is 50g (weight as received, no screening or drying).

CODE	AN	ALYTES & LO	WER	LIMITS (ppb)					PRICE PER SAMPLE	
	Ag	0.05	Eu	0.02	Nb	0.02	Tb	0.005		
	As	0.3	Fe	0.01 ppm	Nd	0.02	Те	0.05		
	Au	0.01	Ga	0.01	Ni	1	Th	0.01		
	Ва	10	Gd	0.01	Pb	0.1	Ti	5		
	Ве	0.1	Ge	0.03	Pd	0.01	TI	0.05		
	Bi	0.05	Hf	0.01	Pr	0.008	Tm	0.006		
	Br	0.05 ppm	Hg	0.1	Pt	0.02	U	0.03		
ME MCCOTM	Ca	0.2 ppm	Но	0.01	Rb	0.1	V	0.2	040.65	
ME-MS23™	Cd	0.05	- 1	0.001 ppm	Re	0.001	W	0.06	€48.65	
	Се	0.05	In	0.05	Sb	0.1	Υ	0.05		
	Со	0.3	La	0.02	Sc	0.5	Yb	0.008		
	Cr	0.5	Li	0.1	Se	0.04	Zn	10		
	Cs	0.05	Lu	0.005	Sm	0.02	Zr	0.1		
	Cu	1	Mg	0.01 ppm	Sn	0.2				
	Dy	0.01	Mn	0.002 ppm	Sr	0.5				
	Er	0.01	Мо	0.2	Ta	0.005				
MS23-PbIS™	²⁰⁴ Pb	0.01	²⁰⁶ Pb	0.01	²⁰⁷ Pb	0.01	²⁰⁸ Pb	0.02	€12.15 Add-on only	

Other Selective Leaches

In addition to Ionic Leach™, ALS offers a variety of standard partial leaches targeting particular soil fractions. They can be done individually or in sequence to best suit project needs.

Minimum sample size is 5g for each leach or for any combination in sequence.

Please enquire for more details.

Super Trace Au and **Pathfinders**

Our new super trace gold and pathfinder package offers industry leading detection limits for exploration of many gold bearing ore systems. Suitable for surface and ground waters.

CODE	AN	ALYTES & DE		PRICE PER SAMPLE					
	Au	0.0002-10	Со	0.005-1000	Pt	0.01-100	TI	0.005-1000	
Au-PATH14L™	Ag	0.005-100	Pd	0.005-100	Sb	0.02-1000	W	0.02-1000	€52.30
	As	0.2-1000							

Hydrogeochemistry

Water that has interacted with rock will take on trace elements which are then transported with the water, producing a larger footprint diagnostic of that rock. Where collection of traditional media such as soils is difficult or impossible such as in swamps, in areas with significant transported cover, and areas where invasive sampling is not possible, hydrogeochemistry provides a direct detection tool on the same scale as stream sediment sampling.

ALS offers multiple reliable and cost-effective water analysis packages to suit your exploration program.

Trace elements and metals analyses require at least 50mL of water. Au requires a minimum of 100mL of water. Anions and physical parameters require a minimum of 150mL of water.

Please contact ALS for information on sampling methodology and preservation if needed. Sampling kits may be purchased at some locations, please enquire.

CODE	DESCRIPTION	PRICE PER SAMPLE
WAT-PREPO2	Filter water samples to <0.45um and acidify with nitric acid before analysis. Required when field filtering and acidification has not been performed.	€6.20
WAT-PREP03	Filter water samples to <0.45um before analysis. Required when water has not been filtered before submittal.	€4.05
WAT-PREP04	Acidify water samples with nitric acid before analysis. Required when samples have not been acidified before submittal.	€2.10
WAT-PREP05	Chemical treatment of water samples to desorb Au from containers before analysis.	€3.20

CODE	AN	ALYTES & DE	TEC	TION LIMITS (μg/L)				PRICE PER SAMPLE
	Ag	0.005	Cu	0.1	Ni	0.2	Та		0.01	
	Al	3	Fe	0.003mg/L	Р	0.005mg/L	Те		0.01	
	As	0.05	Ga	0.05	Pb	0.05	Th		0.005	
	Au	0.002	Hf	0.005	Pd	0.005	Ti		0.2	
	В	3	Hg	0.05	Pt	0.005	TI		0.002	
	Ва	0.05	In	0.01	Rb	0.01	U		0.002	
NE NOTATE	Ве	0.005	Κ	0.01mg/L	Re	0.002	V		0.05	007.20
ME-MS14L™	Bi	0.01	La	0.005	S	0.2mg/L	W		0.01	€67.20
	Ca	0.02mg/L	Li	0.1	Sb	0.01	Υ		0.005	
	Cd	0.005	Mg	0.005mg/L	Sc	0.01	Zn		0.5	
	Се	0.005	Mn	0.05	Se	0.05	Zr		0.02	
	Со	0.005	Мо	0.05	Si	0.03mg/L				
	Cr	0.5	Na	0.01mg/L	Sn	0.05				
	Cs	0.005	Nb	0.005	Sr	0.05				
	Dy	0.005	Gd	0.005	Nd	0.005	Tb		0.005	
MS14L-REE™	Er	0.005	Но	0.005	Pr	0.005	Tm		0.005	€19.95 Add-on only
	Eu	0.005	Lu	0.005	Sm	0.005	Yb		0.005	
	Br	0.05mg/L	NO ₃	0.005mg/L	рН	0.1 units	Condu	ctivity	2µS/cm	
MS14L-ANPH TM	CI	0.5mg/L	SO ₄	0.5mg/L	TDS	3mg/L	Total A	lkalinity	1mg/L	€57.05 Add-on only*
	F	0.02mg/L								

^{*} Speciated alkalinity (bicarbonate, hydroxide and carbonate ion) and density can also be determined at additional cost. For brines and high TDS water please use ME-MS14™ or ME-ICP15.

Biogeochemistry

Plants selectively absorb trace elements from soil, bedrock and water at depth and incorporate them into their tissue. Analyses of plant tissues can therefore be used as a large-scale geochemical sampling device in areas where the rocks of interest are covered by transported cover and non-prospective lithologies. Careful selection of plant species, tissue type and growth age are important factors to be considered as the geochemical response will vary with these factors.

ALS provides multiple digestion and preparation methods for explorers using this sample media. Preparation methods can include the separation of the tissue of interest from other plant parts, milling and ashing.

Ashing results in the concentration of many elements of interest to explorers and when calculated back to the original pre-ashed weight has the effect of dropping detection limits of many elements by an order of magnitude. Please contact your local lab to discuss your specific project goals.

CODE	DESCRIPTION	PRICE PER SAMPLE
VEG-MILL01	Milling of dry plant tissue to 100% passing 1mm. Produces a homogenous and representative pulp that can be subsampled for analysis.	€9.75
VEG-ASH01	Vegetation sample is ashed at 475°C for 24 hours. Pre- and post-ashing weights are reported. Average ash yields are 2-4% for species commonly used in exploration surveys. Minimum recommended sample weight is 100g.	€9.75

Au	CODE	AN	ALYTES & DE	TEC.	TION LIMITS (ppm)			PRICE	PER SAMPLE
Al		Au	0.0002	Cu	0.01	Nb	0.002	Ta	0.001		
ME-VEG41 Mg-VEG41 Mg-VEG41		Ag	0.001	Fe	1	Ni	0.04	Те	0.005		
ME-VEG41™ ashed mashed mash		Al	0.01%	Ga	0.004	Р	0.001%	Th	0.002		
ME-VEG41 ME-V		As	0.01	Ge	0.005	Pb	0.01	Ti	0.001%		
ME-VEG41a ME-		В	1	Hf	0.002	Pd	0.001	TI	0.002		
ME-VEG41a		Ва	0.1	Hg	0.001	Pt	0.002	U	0.005		
Si		Ве	0.01	In	0.005	Rb	0.01	V	0.05	C22 41	-
Sample Ca 0.01% La 0.002 S 0.01% Y 0.003		Bi	0.001	Κ	0.01%	Re	0.001	W	0.01	€32.43	5
Cd		Ca	0.01%	La	0.002	S	0.01%	Υ	0.003		
Co	ig sample	Cd	0.001	Li	0.1	Sb	0.01	Zn	0.1		
Cr		Се	0.003	Mg	0.001%	Sc	0.01	Zr	0.02		
VEG41-RET		Со	0.002	Mn	0.1	Se	0.005				
VEG41-REE™ Dy 0.002 Gd 0.002 Nd 0.001 Tb 0.001		Cr	0.01	Мо	0.01	Sn	0.01				
unashed VEG41a-REF™ ashed Er 0.002 Ho 0.001 Pr 0.002 Tm 0.001 €8.95 Add-on only VEG41a-REF™ ashed Eu 0.002 Lu 0.001 Sm 0.003 Yb 0.003 4 0.0005 6 0.0005 Nb 0.0001 Ta 0.00005 6 0.0003 7 0.00005 6 0.0003 7 0.00005 7 0.00005 7 0.00005 7 0.00005 7 0.00005 7 0.00005 8 0.00005 8 0.00005 7 0.00005 7 0.00005 6 0.00005 7 0.00005 6 0.00005 7 0.00005 7 0.00005 6 0.00005 7 0.00005 7 0.00005 6 0.00005 8 0.00005 7 0.00005 6 0.00005 8 0.00005 7 0.0003 6 1.80 0.00005 8 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005 0.00005<		Cs	0.005	Na	0.001%	Sr	0.02				
VEG41a-REE™ ashed Er 0.002 Ho 0.001 Pr 0.002 Tm 0.001 €8.95 Add-on only		Dy	0.002	Gd	0.002	Nd	0.001	Tb	0.001		
Au		Er	0.002	Но	0.001	Pr	0.002	Tm	0.001	€8.95	Add-on only
Ag 0.00005 Fe 0.05 Ni 0.002 Te 0.0003 Al 0.0005% Ga 0.0002 P 0.00005% Th 0.0001 As 0.0005 Ge 0.0003 Pb 0.0005 Ti 0.00005% B 0.05 Hf 0.0001 Pd 0.00005 Ti 0.00001 Ba 0.005 Hg 0.00005 Pt 0.0001 U 0.0003 Be 0.0005 In 0.0003 Rb 0.0005 V 0.003 Bi 0.00005 K 0.0005% Re 0.00005 W 0.0005 Bi 0.00005 K 0.0005% Re 0.0005 W 0.0005 Ca 0.0005% La 0.0001 S 0.0005% Y 0.0005 Cd 0.0005 Li 0.005 Sb 0.0005 Zr 0.001 Ce 0.0002 Mg 0.00005% Sc 0.0005 Zr 0.001 Co 0.0001 Mn 0.005 Se 0.0005 Zr 0.001 Co 0.0005 Mo 0.0005 Sr 0.0005 Cs 0.0003 Na 0.00005% Sr 0.001 VEGFAC-REET Er 0.0001 Ho 0.00005 Pr 0.0001 Tm 0.00005 €7.95 Add-on only		Eu	0.002	Lu	0.001	Sm	0.003	Yb	0.003		
Ag 0.00005 Fe 0.05 Ni 0.002 Te 0.0003 Al 0.0005% Ga 0.0002 P 0.00005% Th 0.0001 As 0.0005 Ge 0.0003 Pb 0.0005 Ti 0.00005% B 0.05 Hf 0.0001 Pd 0.00005 Ti 0.00001 Ba 0.005 Hg 0.00005 Pt 0.0001 U 0.0003 Be 0.0005 In 0.0003 Rb 0.0005 V 0.003 Bi 0.00005 K 0.0005% Re 0.00005 W 0.0005 Ga 0.0005% La 0.0001 S 0.0005% Y 0.0005 Ca 0.0005% La 0.0001 S 0.0005 Zn 0.005 Ca 0.0005 Mg 0.00005% Sc 0.0005 Zr 0.001 Co 0.0001 Mn 0.005 Se 0.0005 Zr 0.001 Co 0.0005 Mo 0.0005% Sr 0.0005 Co 0.0003 Na 0.00005% Sr 0.0005 Co 0.0001 Gd 0.0001 Nd 0.00005 Tb 0.00005 VEGFAC-REE™ Er 0.0001 Ho 0.00005 Pr 0.0001 Tm 0.00005 67.95 Add-on only		Au	0.00001	Cu	0.0005	Nb	0.0001	Та	0.00005		
VEG41a-FAC™ As 0.0005% Ga 0.0002 P 0.00005% Th 0.0001		Ag	0.00005	Fe	0.05	Ni		Те	0.0003		
Detection Ba 0.05 Hg 0.0001 Pd 0.00005 Ti 0.0001			0.0005%	Ga	0.0002	Р	0.00005%	Th	0.0001		
Detection Ba 0.05 Hf 0.0001 Pd 0.00005 Ti 0.0001 Dimits when back-calculated using the original pre-ash weight of the sample Ce 0.0005 Mg 0.0005 Se 0.0005 Tr 0.0001 Dr 0.0005 Cr 0.0005 Mg 0.0005 Se 0.0005 Tr 0.0001 Dr 0.0005 Cr 0.0005 Mg 0.0005 Se 0.0005 Tr 0.001 Dr 0.001 Dr 0.0005 Tr 0.0005 Dr 0.0005 Dr 0.0005 Dr 0.0005 Dr 0.0005 Dr 0.0005 Dr 0.00005 Dr Dr Dr Dr Dr Dr Dr D	\ = 0.11 = 1.0TM	As	0.0005	Ge	0.0003	Pb	0.0005	Ti	0.00005%		
Section Sect	VEG41a-FAC™	В	0.05	Hf	0.0001	Pd	0.00005	TI	0.0001		
Be		Ba	0.005	Hg	0.00005	Pt	0.0001	U	0.0003		
using the original pre-ash weight of the sample Ca 0.00005 K 0.0005% Re 0.00005 W 0.0005 Ce 0.0005% La 0.0001 S 0.0005% Y 0.0002 Ce 0.0002 Mg 0.0005% Sc 0.0005 Zr 0.001 Co 0.0001 Mn 0.0005 Sn 0.0005 Zr 0.001 Cr 0.0005 Mo 0.0005 Sn 0.0005 Do 0.0005 Do 0.0005 Tr 0.0001 Do 0.0005 Do 0.0005 Tr 0.00005 Do 0.0005 Do 0.00005 Do		Ве	0.0005	In	0.0003	Rb	0.0005	V	0.003		
Original pre-ash weight of the sample Ca 0.0005% La 0.0001 S 0.0005% Y 0.0002 Ce 0.00005 Li 0.005 Sb 0.0005 Zr 0.001 Ce 0.0001 Mn 0.0005 Se 0.0003 Tr 0.001 Cr 0.0005 Mo 0.0005 Sn 0.0005 Tr 0.001 Cs 0.0003 Na 0.00005 Sr 0.001 Tr 0.00005 VEGFAC-REE™ Er 0.0001 Ho 0.00005 Pr 0.0001 Tm 0.00005 €7.95 Add-on only			0.00005	Κ	0.0005%	Re	0.00005	W	0.0005	€1.80	Add-on only
Sample Cd 0.0003 Et 0.005 Sb 0.0005 Zh 0.005 Ce 0.0002 Mg 0.00005% Sc 0.0005 Zr 0.001 Co 0.0001 Mn 0.005 Se 0.0003 Cr 0.0005 Mo 0.0005 Sn 0.0005 Cs 0.0003 Na 0.00005% Sr 0.001 Dy 0.0001 Gd 0.0001 Nd 0.00005 Tb 0.00005 VEGFAC-REE™ Er 0.0001 Ho 0.00005 Pr 0.0001 Tm 0.00005 €7.95 Add-on only		Ca	0.0005%	La	0.0001	S	0.0005%	Υ	0.0002		
Ce 0.0002 Mg 0.00005% Sc 0.0005 Zr 0.001	9	Cd	0.00005	Li	0.005	Sb	0.0005	Zn	0.005		
Cr 0.0005 Mo 0.0005 Sn 0.0005 Cs 0.0003 Na 0.00005% Sr 0.001 Dy 0.0001 Gd 0.0001 Nd 0.00005 Tb 0.00005 VEGFAC-REE™ Er 0.0001 Ho 0.00005 Pr 0.0001 Tm 0.00005 €7.95 Add-on only	sample	Се	0.0002	Mg	0.00005%	Sc	0.0005	Zr	0.001		
Cs 0.0003 Na 0.00005% Sr 0.001 Dy 0.0001 Gd 0.0001 Nd 0.00005 Tb 0.00005 VEGFAC-REE™ Er 0.0001 Ho 0.00005 Pr 0.0001 Tm 0.00005 €7.95 Add-on only		Со	0.0001	Mn	0.005	Se	0.0003				
Dy 0.0001 Gd 0.0001 Nd 0.00005 Tb 0.00005 VEGFAC-REE™ Er 0.0001 Ho 0.00005 Pr 0.0001 Tm 0.00005 €7.95 Add-on only		Cr	0.0005	Мо	0.0005	Sn	0.0005				
VEGFAC-REE™ Er 0.0001 Ho 0.00005 Pr 0.0001 Tm 0.00005 €7.95 Add-on only		Cs	0.0003	Na	0.00005%	Sr	0.001				
		Dy	0.0001	Gd	0.0001	Nd	0.00005	Tb	0.00005		
Fig. 0.0001 Lij. 0.00005 Sm. 0.0002 Vb. 0.0002	VEGFAC-REE™	Er	0.0001	Но	0.00005	Pr	0.0001	Tm	0.00005	€7.95	Add-on only
Eu 0.0001 Eu 0.00003 3111 0.0002 1D 0.0002		Eu	0.0001	Lu	0.00005	Sm	0.0002	Yb	0.0002		

Aqua Regia With ICP-MS Finish

Method selection can be key to achieving exploration success. Sample type, target commodity, and pathfinder elements should all be considered when selecting the most appropriate method for your project.

Aqua regia is an excellent exploration tool for various deposit types that involve gold, silver and base metals hosted in sulphide and carbonate minerals.

CODE	AN	ALYTES & RAI	NGE:	S (ppm)					PRICE PER SAMPLE
	Ag	0.01-100	Cs	0.05-500	Мо	0.05-10000	Sr	0.2-10000	
	ΑI	0.01-25%	Cu	0.2-10000	Na	0.01-10%	Ta	0.01-500	
	As	0.1-10000	Fe	0.01-50%	Nb	0.05-500	Те	0.01-500	
	Au	0.02-25	Ga	0.05-10000	Ni	0.2-10000	Th	0.2-10000	
	В	10-10000	Ge	0.05-500	Р	10-10000	Ti	0.005-10%	
	Ва	10-10000	Hf	0.02-500	Pb	0.2-10000	TI	0.02-10000	€27.45
ME-MS41™ 0.5g sample	Ве	0.05-1000	Hg	0.01-10000	Rb	0.1-10000	U	0.05-10000	
0.5g sample	Bi	0.01-10000	In	0.005-500	Re	0.001-50	V	1-10000	
	Ca	0.01-25%	Κ	0.01-10%	S	0.01-10%	W	0.05-10000	
	Cd	0.01-1000	La	0.2-10000	Sb	0.05-10000	Υ	0.05-500	
-	Се	0.02-500	Li	0.1-10000	Sc	0.1-10000	Zn	2-10000	
	Со	0.1-10000	Mg	0.01-25%	Se	0.2-1000	Zr	0.5-500	
	Cr	1-10000	Mn	5-50000	Sn	0.2-500			

^{*} Gold determinations by this method are semi-quantitative due to the small sample weight used. For Au with multi-element using a 25g or 50g charge, please use AuME-TL43™ or AuME-TL44™.

Single Elements by Aqua Regia

When analytical results for one or only a few elements with low detection limits are required. More elements are available on request.

CODE	AN	ALYTES & RAI	NGE		PRICE PER SAMPLE				
	Ag	0.01-25	Hg	0.005-25	Se	0.2-250	U	0.05-250	€14.30
ME-MS42™ 0.5g sample	As	0.1-250	Re	0.001-250	Те	0.01-250			01.50/-1
0.5g sample	Bi	0.01-250	Sb	0.05-250	TI	0.02-250			+ €1.50/element

Request specific elements.

Four Acid Digestion With ICP-MS Finish

Four acid digestion quantitatively dissolves nearly all minerals in the majority of geological materials. However, barite, rare earth oxides, columbite-tantalite, and titanium, tin and tungsten minerals may not be fully digested.

Despite the potentially incomplete digestion of REEs, the leachable portion of these elements may hold important exploration vectoring information and can be chosen as an add-on.

CODE	AN	ALYTES & RAI	NGE:	S (ppm)					PRICE PER SAMPLE
	Ag	0.01-100	Cu	0.2-10000	Na	0.01-10%	Sr	0.2-10000	
	Al	0.01-50%	Fe	0.01-50%	Nb	0.1-500	Ta	0.05-500	
	As	0.2-10000	Ga	0.05-10000	Ni	0.2-10000	Те	0.05-500	
ME-MS61 TM	Ва	10-10000	Ge	0.05-500	Р	10-10000	Th	0.01-10000	
0.25g sample	Ве	0.05-1000	Hf	0.1-500	Pb	0.5-10000	Ti	0.005-10%	€32.75
Gap.G	Bi	0.01-10000	In	0.005-500	Rb	0.1-10000	TI	0.02-10000	002.70
	Ca	0.01-50%	Κ	0.01-10%	Re	0.002-50	U	0.1-10000	
*ME-MS61m™	Cd	0.02-1000	La	0.5-10000	S	0.01-10%	V	1-10000	€44.45
0.75g sample	Се	0.01-10000	Li	0.2-10000	Sb	0.05-10000	W	0.1-10000	
	Со	0.1-10000	Mg	0.01-50%	Sc	0.1-10000	Υ	0.1-500	
	Cr	1-10000	Mn	5-100000	Se	1-1000	Zn	2-10000	
	Cs	0.05-10000	Мо	0.05-10000	Sn	0.2-500	Zr	0.5-500	
	Dy	0.05-1000	Gd	0.05-1000	Nd	0.1-1000	Tb	0.01-1000	
ME-MS61r™	Er	0.03-1000	Но	0.01-1000	Pr	0.03-1000	Tm	0.01-1000	€41.05 Full suite
	Eu	0.03-1000	Lu	0.01-1000	Sm	0.03-1000	Yb	0.03-1000	i uii suite

^{*} Note: To include Hg by a separate method in the suite of elements above, please request ME-MS61m™ instead of ME-MS61™.

Single Elements by Four Acid

When analytical results for one or only a few elements with low detection limits are required. More elements are available on request.

CODE	AN	IALYTES & RA	NGE	S (ppm)		PRICE PER SAMPLE			
	Ag	0.01-100	Ga	0.05-500	Se	1-500	TI	0.02-500	
ME-MS62™	As	0.2-500	Мо	0.05-500	Sn	0.2-500	U	0.1-500	€17.50
0.25g sample	Bi	0.01-500	Re	0.002-100	Те	0.05-500	W	0.1-500	+ €1.50/ element
	Cd	0.02-500	Sb	0.05-500	Th	0.01-500			

Request specific elements.

Portable XRF for Lithogeochemistry

The crucial lithogeochemical elements - silicon, titanium and zirconium - may be added to any ALS four acid method for a more complete element suite.

CODE	ANALYTES & RANGES	PRICE PER SAMPLE
pXRF-34	Portable XRF scan of an unmineralised pulverised sample. Ranges: Si 0.5%-47% Ti 0.1%-60% Zr 5ppm-5% 15g sample	Add-on to €4.75 multi-element analysis only.

Aqua Regia With **ICP-AES** Finish

These methods are economical tools for first pass exploration geochemistry. Data reported from an aqua regia digestion should be considered as representing only the leachable portion of the particular analyte.

CODE	ANA	ALYTES & RAN		PRICE PER SAMPLE					
	Ag	0.2-100	Со	1-10000	Mg	0.01-25%	Sc	1-10000	
	Al	0.01-25%	Cr	1-10000	Mn	5-50000	Sr	1-10000	€13.20 full package
	As	2-10000	Cu	1-10000	Мо	1-10000	Th	20-10000	or €6.50
ME-ICP41 0.5g sample	В	10-10000	Fe	0.01-50%	Na	0.01-10%	Ti	0.01-10%	+ €0.90/element
· .	Ва	10-10000	Ga	10-10000	Ni	1-10000	TI	10-10000	
*ME-ICP41m 1g sample	Ве	0.5-1000	Hg	1-10000	Р	10-10000	U	10-10000	€19.95
ig sample	Bi	2-10000	Κ	0.01-10%	Pb	2-10000	V	1-10000	
	Ca	0.01-25%	La	10-10000	S	0.01-10%	W	10-10000	
	Cd	0.5-1000	Li	10-10000	Sb	2-10000	Zn	2-10000	

^{*}To include Hg to a lower detection limit of 0.005ppm by a separate method, please request package ME-ICP41m.

Four Acid **Digestion With ICP-AES** Finish

Four acid digestions are able to dissolve most minerals, but although the term "near-total" is used, not all elements are quantitatively extracted in some sample matrices.

CODE	AN.	ALYTES & RAI		PRICE PER SAMPLE					
	Ag	0.5-100	Cr	1-10000	Мо	1-10000	Th	20-10000	
	Al	0.01-50%	Cu	1-10000	Na	0.01-10%	Ti	0.01-10%	€16.85 full package
ME-ICP61	As	5-10000	Fe	0.01-50%	Ni	1-10000	TI	10-10000	or €9.30
0.25g sample	Ва	10-10000	Ga	10-10000	Р	10-10000	U	10-10000	+ €0.90/element
	Ве	0.5-1000	Κ	0.01-10%	Pb	2-10000	V	1-10000	
*ME-ICP61m	Bi	2-10000	La	10-10000	S	0.01-10%	W	10-10000	€28.55
0.75g sample	Ca	0.01-50%	Li	10-10000	Sb	5-10000	Zn	2-10000	
	Cd	0.5-1000	Mg	0.01-50%	Sc	1-10000			
	Со	1-10000	Mn	5-100000	Sr	1-10000			

^{*} To include Hg in the suite of elements above, please request method ME-ICP61m

Intermediate Level Aqua Regia

These packages can be used as an economical alternative to analysing low grade ore or samples with known mineralisation. Data reported from an aqua regia digestion should be considered as representing only the leachable portion of the particular analyte.

CODE	ANA	ALYTES & RAI	NGE		PRICE PER SAMPLE				
	Ag	1-200	Cr	5-50000	Мо	5-50000	Th	100-50000	
	ΑI	0.05-50%	Cu	5-50000	Na	0.05-50%	Ti	0.05-50%	
	As	10-100000	Fe	0.05-50%	Ni	5-50000	TI	50-50000	
	Ва	50-50000	Ga	50-50000	Р	50-50000	U	50-50000	€21.10 full package
ME-ICP41a 0.4g sample	Ве	5-500	Hg	5-50000	Pb	10-50000	V	5-50000	or €12.70
0.4g sample	Bi	10-50000	Κ	0.05-50%	S	0.05-10%	W	50-50000	+ €2.90/element
	Ca	0.05-50%	La	50-50000	Sb	10-50000	Zn	10-50000	
	Cd	5-2500	Mg	0.05-50%	Sc	5-50000			
	Со	5-50000	Mn	25-50000	Sr	5-50000			

Intermediate **Level Four Acid** Digestion

These packages can be used as an economical alternative to analysing low grade ore or samples with known mineralisation. Four acid digestions are able to dissolve most minerals, but not all elements are quantitatively extracted in some samples.

CODE	AN	ALYTES & RAN	NGE	S (ppm)	ı	PRICE PER SAMPLE			
	Ag	1-200	Cr	10-100000	Na	0.05-30%	Ti	0.05-30%	
	Al	0.05-30%	Cu	10-100000	Ni	10-100000	TI	50-50000	
	As	50-100000	Fe	0.05-50%	Р	50-100000	U	50-50000	
	Ba	50-50000	Ga	50-50000	Pb	20-100000	V	10-100000	€23.95 full package
ME-ICP61a 0.4g sample	Ве	10-10000	Κ	0.1-30%	S	0.05-10%	W	50-50000 c	or €15.50
0.4g sample	Bi	20-50000	La	50-50000	Sb	50-50000	Zn	20-100000	+ €2.90/element
	Ca	0.05-50%	Mg	0.05-50%	Sc	10-50000			
	Cd	10-10000	Mn	10-100000	Sr	10-100000			
	Со	10-50000	Мо	10-50000	Th	50-50000			

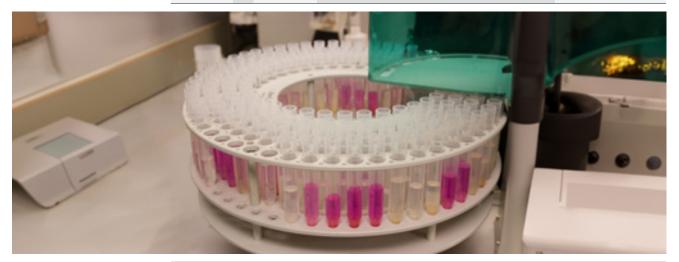
Mercury

Aqua regia quantitatively dissolves Hg and uses a digestion temperature low enough to avoid fuming off this volatile element.

CODE	ANALYTE & RANGES (ppm)		DESCRIPTION	PRICE PER SAMPLE
Hg-MS42	Hg	0.005-100	Trace level Hg by aqua regia and ICP-MS. 0.5g sample	€11.70
Hg-ICP42	Hg	1-100000	High grade Hg by aqua regia and ICP-AES. 0.5g sample	€11.30
Hg-CON01	Hg	1-10000	Hg in ores by acid digestion and ICP-AES. 2g sample	€91.05

Resistive Minerals By **Fusion**

The lithium borate fusion & ICP-MS finish allows analysis of the most resistive elements at trace levels. Additional elements are available on request.


CODE	AN	ALYTES & RAI	PRICE PER SAMPLE						
	Се	0.1-10000	Rb	0.2-10000	Ta	0.1-2500	W	0.5-10000	€20.95
ME-MS85™ 0.1g sample	La	0.1-10000	Sn	0.5-10000	Th	0.05-1000	Υ	0.1-10000	01.50/-1
o.ig sample	Nb	0.05-2500	Sr	0.1-10000	U	0.05-1000	Zr	1-10000	+ €1.50/element

 $Notes: For high grade \ range \ request \ ME-MS85h. \ For the full \ suite \ of \ elements \ by \ borate \ fusion \ \& \ ICP-MS \ request \ Alternative \ A$ ME-MS81 (see page 32).

Halogens

Elemental analysis of the halide minerals containing chlorine and fluorine generally require fusions that will retain the elements in solution, as well as specific instrumentation for analysis.

CODE	E ANALYTES & RANGES (ppm)		DESCRIPTION	PRICE PER SAMPLE
CI-IC881	CI	50-20000	KOH fusion and ion chromatography. 0.2g sample	€24.70
CI-ELE81a	CI	50-20000	Specific to CI in phosphates only. KOH fusion and ion selective electrode. 1g sample	€22.35
CI-XRF20	CI	0.001-6%	Lithium borate fusion and XRF. 0.7g sample	€21.85
CI-VOL66	CI	0.01-65%	Nitric acid digestion and titration. 1g sample	€40.80
F-IC881	F	20-20000	KOH fusion and ion chromatography. 0.2g sample	€24.60
F-ELE81a	F	20-20,000	KOH fusion and ion selective electrode. 0.2g sample	€22.35
F-ELE82	F	0.01-100%	Na ₂ O ₂ fusion, citric acid leach and ion selective electrode. 0.1g sample	€31.65
ME-IC881	CI F	50-20000 20-20000	KOH fusion and ion chromatography. 0.2g sample	€34.55

Loss On Ignition

LOI measures the content of a sample lost as gases when subjected to high temperatures, often including water and CO₂. Many more temperatures and ignition times are available, please enquire.

CODE	ANALYTES & RA	NGES (%)	DESCRIPTION	PRICE PER SAMPLE
OA-GRA10			Gravimetric procedure after drying at 105°C.	€16.85
OA-GRA11	H ₂ O (Moisture)	0.01-100	2 hours (normal samples).24 hours (hygroscopic samples).5g sample	€17.90 QAQC samples inserted for monitoring
OA-IR06	H ₂ O + (Water of Crystallisation)	0.01-100	Combustion furnace and infrared spectrometry. 1g sample	€16.85
OA-GRA05xf	LOI @ 500°C	0.01-100	Loss on Ignition at 500°C after sample is pre-dried at 105°C. 1g sample.	€14.20
OA-GRA05	LOI @ 1000°C	0.01-100	Loss on Ignition at 1000°C on an as received basis. 1g sample.	€16.60

Stable Isotopes

Many important parameters of mineralising fluids may be determined from stable isotope ratios. The isotopic alteration halo may extend beyond visible mineralogy changes, creating a larger deposit footprint for easier exploration vectoring.

CODE	ANALYTE	DESCRIPTION	PRICE PER SAMPLE
O-ISTP01	0 111 07 1	Specific to clays and silicate minerals. Determination	€149.40 each
H-ISTP01	O and H in Silicate Minerals	using a complex gas collection procedure and IRMS. Sample must be supplied as a single-mineral separate. TAT is 30 days.	€130.30 each
S-ISTP01	Sulphur	Specific to sulphide and sulphate minerals. Determination using TC/EA and IRMS. Sample must be supplied as a single-mineral separate. TAT is 30 days.	€69.65
CO-ISTP01	Carbon and Oxygen	Specific to minerals containing carbon and/or oxygen. Determination using acid digestion and IRMS. Sample must be supplied as a single-mineral separate. TAT is 30 days.	€49.45

Pb Isotope Ratios For Exploration

This fast, low-cost analysis of Pb isotope ratios in prepared samples allows fingerprinting of different lithologies and hydrothermal fluid flow pathways, providing a new vector to ore deposits.

CODE	ANALYTE	DESCRIPTION	PRICE PER SAMPLE
PbIS-RAT41	Six isotope ratios	Pb isotope ratios by acid digestion and ICP-MS analysis. Total Pb content of the sample is required in advance.	€36.95
	including ²⁰⁴ Pb, ²⁰⁶ Pb, ²⁰⁷ Pb, and ²⁰⁸ Pb isotopes	May be run on whole rock pulps. 0.5g sample	
PbIS-RAT61		For aqua regia digestion request PbIS-RAT41 For four acid digestion request PbIS-RAT61	€40.90

NOTE: Samples must contain >2ppm Pb for analysis to be viable

Radiogenic Isotopes

These methods provide insight into provenance and character of hydrothermal fluids and rock genesis, helping unravel geological history for a more sophisticated understanding of your ore body.

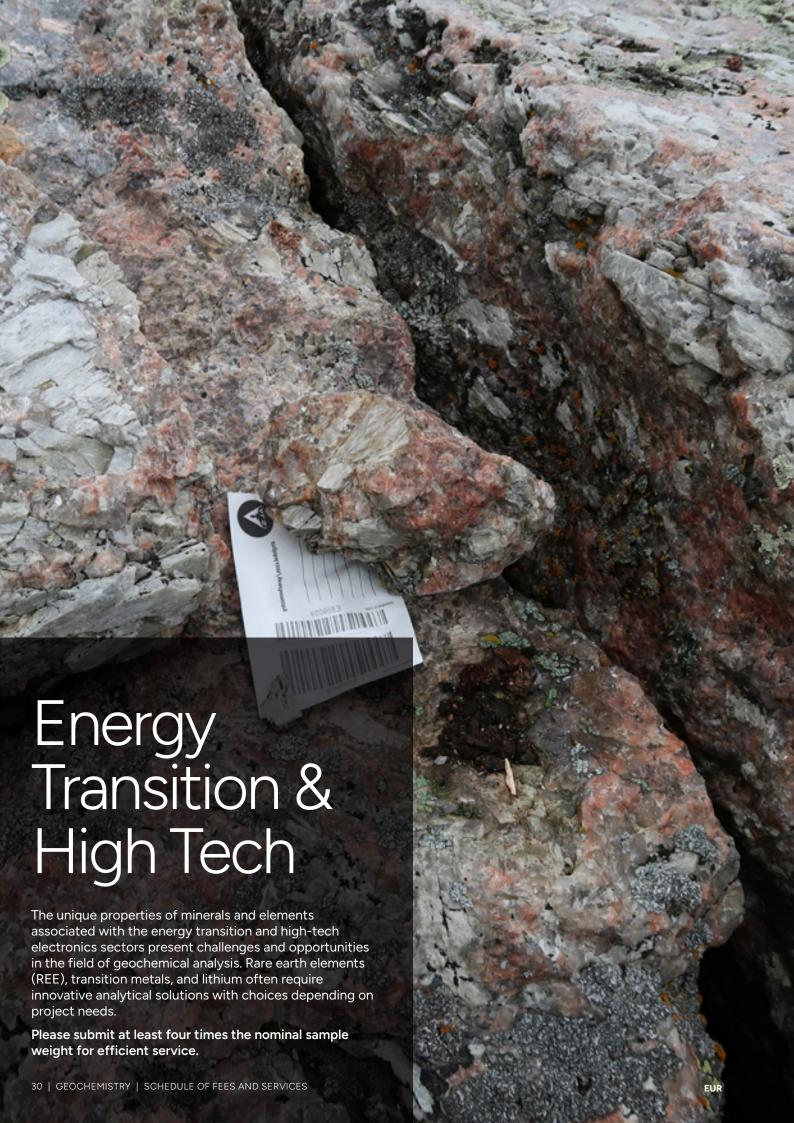
CODE	ANALYTE	DESCRIPTION	PRICE PER SAMPLE
Pb-ISTP01	Pb/Pb	May be done on whole rock pulps or on specific Pb- bearing minerals. Measurement by acid digestion and HR-ICP-MS. Samples may require Hg separation at an additional cost. TAT is 30 days.	€345.80
Nd-ISTP01	Sm/Nd	Performed on whole rock pulps. Measurement by column separation and HR-ICP-MS. Total Sm and Nd content is required in advance. TAT is 30 days.	€700.85

Geochronology

These methods may be used to date the ages of specific minerals, hydrothermal alteration events, and emplacement of volcanic-plutonic units. Age constraints on important events can help refine the deposit model and identify alteration that did not contribute to mineralisation.

Sample sizes required for most isotopic analysis methods vary depending on mineralogy and purpose; please contact client services for more information.

CODE	ANALYTE	DESCRIPTION	PRICE PER SAMPLE
Ar-ISTP01	Ar/Ar	Done on targeted minerals. Rock and drill core should be submitted intact or crushed only, as sample prep is included in the price. Measurement by irradiation and step heating in a mass spectrometer. Price includes sample preparation. Turnaround time approximately 12 months.	€1,865.05
Re-ISTP01	Re/Os	Specific to molybdenite. Rock or drill core must be received whole as steel jaw crushing will contaminate the sample with Re. Age can only be determined for rocks of >0.5 Ma, and the molybdenite separate must contain >100ppm Re. Price includes mineral separation, solvent extraction, column separation and TIMS analysis. TAT is 70 days.	€1,875.35
U-ISTP02	LIVO	U-Pb dating by LA-ICP-MS of igneous rocks using zircon and monazite. Age of the sample is reported. Analysis includes a standard set of 30 elements, including REE. Price includes preparation of up to 1kg of sample.	€979.90/20 grains*
U-ISTP03	- U/Pb	U-Pb dating of detrital grains by LA-ICP-MS. Age probability distribution in the sample is reported. Analysis includes a standard set of 30 elements, including REE. Preparation of 2kg of sample included in price.	€1,624.90/60 grains*


^{*} larger numbers of grains can be analysed at an increased cost.

Mineral Chemistry

ALS has partnered with CODES Analytical Laboratories, at the University of Tasmania, to provide state of the art mineral analyses for exploration, mining and metallurgical applications.

CODE	ANALYTE	DESCRIPTION	PRICE PER SAMPLE
LA-MIN	Laser ablation mineral analyses	Quantitative analyses of in situ minerals. Advantage of small spot size (15-80microns). Trace and major element compositions are reported.	€40.00/analysis
MIN-MOUNT	Mineral mounts	Preparation of 25mm round mounts for in-situ mineral analyses in rock samples (no crushing, mineral separation and grain mounting).	€54.00/mount
SEM-IMG	Grain imaging	CL imaging of grains for isotopic dating using SEM. Cost dependent on number of grains or amount of time taken for mineral relationship imaging.	€145.00/30 grains
PREP-THINP	Thin section	Preparation of thin sections for both reflected light microscopy and SEM analysis, and for transmitted light	€108.05 per section/ Reflected light, SEM
PREP-THINS	preparation	microscopy and SEM analysis, and for transmitted light microscopy only.	€54.00 per section/ Transmitted light

Trace Level Lithium **Exploration**

Lithium hosted in pegmatites can occur with economic grades of rare earths and other trace metals such as boron and cesium. A sodium peroxide fusion is required for complete recovery in these deposits.

Silica is not reportable by ME-MS89L™ due to the use of HF during digestion and interaction with glassware. Si and elements from ME-ICP81 may be added to ME-MS89L™ for an additional fee.

Intermed	diate
and Ore	Grade
Lithium	

More elements may be added to these methods, and they may be packaged with ICP-MS finishes for associated pegmatitehosted commodities at trace levels.

Lithium In Sedimentary **Deposits**

In many cases, aqua regia provides better recovery of Li than four acid digestions due to complex chemical reactions. Roasting samples prior to four acid digestions, particularly hectorite, may mitigate this effect.

Lithium Brines

ALS analyses brine samples after settling of suspended particles. If the samples require acidification or filtration in the lab, please indicate this prominently on the sample submittal form.

Uncommon Metals

These elements have many high-tech applications in electronics, engineering and pharmaceuticals. They require specialised digestions and instrument methods for precise and accurate measurement.

CODE	AN	ALYTES & RAI	NGE:	S (ppm)					PRICE PER SAMPLE
	Ag	5-12500	Eu	0.03-25000	Nb	0.8-25000	Те	0.5-25000	
	As	4-25000	Fe	0.01-25%	Nd	0.07-25000	Th	0.1-25000	
	В*	8-25000	Ga	0.5-25000	Ni	10-25000	Ti	0.005-25%	
	Ва	2-25000	Gd	0.03-25000	Pb	0.5-25000	TI	0.02-25000	
MF-MS89L™	Ве	0.4-25000	Ge	0.5-25000	Pr	0.03-25000	Tm	0.01-25000	€51.75
0.2g sample	Bi	0.1-25000	Но	0.01-25000	Rb	0.5-25000	U	0.2-25000	*€6.60
0.29 00p.0	Ca	0.1-25%	In	0.3-25000	Re	0.01-25000	V	1-25000	Add-on only
*B-MS89L	Cd	0.8-25000	Κ	0.05-25%	Sb	0.3-25000	W	0.3-25000	
	Се	0.2-25000	La	0.08-25000	Se	3-25000	Υ	0.2-25000	
	Со	0.5-25000	Li	2-25000	Sm	0.04-25000	Yb	0.02-25000	
	Cs	0.1-25000	Lu	0.05-25000	Sn	3-25000	Zn	10-25000	
	Cu	20-25000	Mg	0.01-30%	Sr	20-25000			
	Dy	0.03-25000	Mn	10-25000	Та	0.04-25000			
	Er	0.02-25000	Мо	2-25000	Tb	0.01-25000			

*B-MS89L - Glassless digestion and analysis to eliminate boron from labware

CODE	ANA	ALYTES & RA	PRICE PER SAMPLE							
	Al ₂ O ₃	0.02-100	Cu	0.01-50	MnO	0.01-50	TiO ₂	0.02-83		
	As	0.01-10	Fe ₂ O ₃	0.01-100	Ni	0.005-30	Zn	0.01-60		
ME-ICP89 0.2g sample	CaO	0.07-70	K ₂ O	0.06-60	Pb	0.01-30			€43.30	
0.2g sample	Со	0.005-30	Li	0.001-10	S	0.01-60				
	Cr ₂ O ₃	0.01-88	MgO	0.01-50	SiO ₂	0.2-100				
MS91-PKG		oackage comb		€65.30						
	U and	In for an exte	d Th for an extended pegmatite exploration suite. 0.2g sample							
ME-ICP82b	Li	0.001-10		y grade lithium Our highest pr		€20.15				
	В	0.02-50	deter	mination in kn	own d	eposits.			+ €4.05/element	
			0.2g	sample						

CODE	AN	ALYTES & RANGES	DESCRIPTION	PRICE PER SAMPLE
Li-ICP41	Li	10ppm-1%	Aqua regia and ICP-AES finish. Multi-element package also available. 0.5g sample	€7.40
Li-ICP61	Li	10ppm-1%	Four acid and ICP-AES finish. Multi-element package also available. 0.25g sample	€10.20
Li-OG63	Li	0.005-10%	Ore grade Li by specialised four-acid digestion and ICP-AES finish. Best suited to Li-bearing silicate sediments. 0.4g sample	€13.95
RST-21	Dry	roasting pre-treatment	€8.50	

CODE	AN	ALYTES & RAI	PRICE PER SAMPLE							
ME-MS14™	Li	0.01-10	Includes a suite of 46 elements relevant to brine 0.01-10 exploration in addition to Li. Requires 50mL brine.							
	Ag	0.5-100	Cd	0.2-100	Mg	5-100000	S	5-50000		
	Al	5-10000	Со	1-1000	Mn	0.5-1000	Sb	5-1000		
ME-ICP15	As	5-1000	Cr	1-1000	Мо	0.5-1000	Sr	2-5000		
Requires	В	5-10000	Cu	0.5-1000	Na	100-150000	Ti	0.5-1000	€42.60	
100mL brine	Ва	0.5-1000	Fe	50-50000	Ni	2-1000	V	0.5-1000		
	Ве	0.05-100	K	100-150000	Р	5-1000	Zn	0.5-1000		
	Са	10-150000	Li	0.5-20000	Pb	5-1000				
Li-BrPKG		Conductivity, T Ilinity	DS,	Physical parameters and alkalinity of lithium brines. Requires 100mL brine.					€30.65	

CODE	AN	ALYTE RANGE (ppm)	DESCRIPTION	PRICE PER SAMPLE
Be-ICP81	Ве	0.01-100%	${\rm Na_2O_2}$ fusion and ICP-AES finish. 0.2g sample	€24.20
B-MS82L	В	5-10000	Na ₂ O ₂ and ICP-MS finish for super trace B. 0.2g sample	€25.30
ME-ICP82b	B Li	0.02-50% 0.001-10%	Na ₂ O ₂ fusion and ICP-AES finish. B and/or Li may be reported. 0.2g sample	€20.15 + €4.05/element
Ge-MS66	Ge	1-500	HNO ₃ -HF digestion with orthophosphoric acid leach and ICP-MS finish. 0.5g sample	€38.70

Super-Trace, **Total Extraction REE & Refractory** Minerals

A unique ammonium bi-fluoride (ABF) decomposition that leverages its high boiling point (239.5° C) achieves complete recovery of REEs and refractory phases. The ABF chemical digestion coupled with proprietary ICP-MS technology enables detection limits unachievable with traditional flux-based methods.

CODE	AN.	ALYTES & RAI		PRICE PER SAMPLE					
	ΑI	0.05-50%	Eu	0.004-5000	Мо	0.1-10000	Ta	0.005-10000	
	В	10-10000	Fe	0.05-50%	Na	0.05-10%	Tb	0.001-5000	
	Ва	1-10000	Gd	0.004-5000	Nb	0.02-10000	Th	0.004-10000	
	Ве	0.03-1000	Hf	0.008-10000	Nd	0.04-10000	Ti	0.0002-20%	
	Ca	0.01-50%	Но	0.002-5000	Р	0.002-20%	Tm	0.001-5000	
ME-MS71L™ 0.1q sample	Се	0.1-10000	K	0.05-25%	Pb	0.5-10000	U	0.01-10000	€46.10
o.ig sample	Со	0.2-10000	La	0.1-10000	Pr	0.01-5000	V	1-10000	
	Cs	0.01-10000	Li	1-10000	Rb	0.05-10000	W	0.2-10000	
	Cu	2-10000	Lu	0.001-5000	Sc	0.04-10000	Υ	0.01-10000	
	Dy 0	0.003-5000	Mg	0.01-50%	Sm	0.006-5000	Yb	0.001-5000	
	Er	0.002-5000	Mn	0.005-50%	Sr	0.4-10000	Zr	0.5-10000	

REE Exploration in Clays

This ammonium sulphate leach is a useful approach for liberating REEs from ionic clays formed by the natural weathering of REE bearing minerals and adsorption of REE ions onto clay surfaces.

CODE	AN	ALYTES & RAI	PRICE PER SAMPLE						
	ΑI	5-250000	Fe	5-500000	Nb	0.005-500	Ta	0.005-500	
	В	10-10000	Gd	0.005-1000	Nd	0.05-10000	Tb	0.002-1000	
	Ва	0.5-10000	Hf	0.005-500	Ni	0.1-10000	Th	0.005-10000	
	Ве	0.01-1000	Но	0.002-1000	Р	5-10000	Ti	5-100000	
	Са	20-250000	Κ	20-100000	Pb	0.05-10000	Tm	0.002-1000	000.50
ME-MS19™	Се	0.005-500	La	0.002-10000	Pr	0.004-1000	U	0.005-10000	
30g sample	Со	0.005-10000	Li	0.2-10000	Rb	0.05-10000	V	0.4-10000	€39.50
	Cs	0.005-500	Lu	0.002-1000	Sc	0.005-10000	W	0.01-10000	
	Cu	0.04-10000	Mg	1-250000	Si	10-10000	Υ	0.005-500	
	Dy	0.005-1000	Mn	0.2-50000	Sm	0.004-1000	Yb	0.004-1000	-
	Er	0.004-1000	Мо	0.01-10000	Sn	0.05-500	Zr	0.01-500	
	Eu	0.004-1000	Na	50-100000	Sr	0.03-10000			

Trace Elements by Li Borate **Fusion**

A lithium borate fusion prior to acid dissolution and ICP-MS analysis provides the most quantitative analytical approach for a broad suite of trace elements.

CODE	AN	ALYTES & RA	PRICE PER SAMPLE						
	Ba	0.5-10000	Gd	0.05-1000	Rb	0.2-10000	Ti	0.01-10%	
	Се	0.1-10000	Hf	0.05-10000	Sc	0.5-500	Tm	0.01-1000	
	Cr	5-10000	Но	0.01-1000	Sm	0.03-1000	U	0.05-1000	
ME-MS81™	Cs	0.01-10000	La	0.1-10000	Sn	0.5-10000	V	5-10000	
0.1g sample	Dy	0.05-1000	Lu	0.01-1000	Sr	0.1-10000	W	0.5-10000	€38.70
	Er	0.03-1000	Nb	0.05-2500	Ta	0.1-2500	Υ	0.1-10000	
	Eu	0.02-1000	Nd	0.1-10000	Tb	0.01-1000	Yb	0.03-1000	
	Ga	0.1-1000	Pr	0.02-1000	Th	0.05-1000	Zr	1-10000	

Ore Grade Rare Earth Elements

Many REEs occur in minerals resistant to acid digestion, so fusion is the preferred method of decomposition. ALS offers ICP-MS/ICP-AES and XRF determinations. These methods are most appropriate for known ores; see the Whole Rock Analysis & Lithogeochemistry section for trace level methods.

CODE	AN	ALYTES & RA	PRICE PER SAMPLE						
	Ce*	3-50000	Но	0.05-5000	Rb	1-50000	Tm	0.05-5000	
	Dy*	0.3-5000	La*	3-50000	Sm*	0.2-5000	U	0.3-5000	
ME-MS81h™	Er	0.2-5000	Lu	0.05-5000	Sn	5-50000	W	5-50000	05045
0.1g sample	Eu	0.2-5000	Nb	1-50000	Ta	0.5-5000	Υ	3-50000	€59.15
	Gd*	0.3-5000	Nd*	0.5-50000	Tb*	0.05-5000	Yb	0.2-5000	
	Hf	1-50000	Pr*	0.2-5000	Th	0.3-5000	Zr	10-50000	

^{*}These elements may be determined up to 30% by ME-OGREE.

CODE	ANALYTE	S & RANGES	(%)				PRICE PER SAMPLE
	CeO ₂	0.01-50	Ho ₂ O ₃	0.01-10	Sm ₂ O ₃	0.01-10	_
	Dy ₂ O ₃	0.01-10	La ₂ O ₃	0.01-50	Tb ₄ O ₇	0.01-10	
ME-XRF30 0.7g sample	Er ₂ O ₃	0.01-10	Lu ₂ O ₃	0.01-10	Tm_2O_3	0.01-10	€37.10
0.7g sample	Eu ₂ O ₃	0.01-10	Nd ₂ O ₃	0.01-10	Υ	0.01-10	
	Gd ₂ O ₃	0.01-10	Pr ₆ O ₁₁	0.01-10	Yb ₂ O ₃	0.01-10	_
OA-GRA05x	Loss on Ign	ition		Furnace or Thermogr	avimetr	ic Analyser (TGA)	€7.50
ME-GRA05	LUSS UITIGIT	Ition		1g sample			+ €4.55/temperature

Uranium

ALS is qualified and experienced in handling NORM samples in every area with active uranium exploration and mining, with added lab certification in certain jurisdictions.

CODE	ANALYTE	PRICE PER SAMPLE
UEXP-PKG01	An exploration package targeted at unconformity-hosted uranium deposits where the ore is in the basin sedimentary rocks. 1g sample Includes full 62 element suite from ME-MS41L TM . Includes REEs and Pb isotope concentrations. ²⁰⁴ Pb, ²⁰⁵ Pb, ²⁰⁵ Pb, ²⁰⁵ Pb – 0.005-250ppm	€67.40
	Also includes ultra-trace boron by fusion from B-MS82L. B – 5-10000ppm	
ME-MS61u™	Full 48 element suite from ME-MS61 TM , optimised for U with specific CRMs for superior quality control. 0.25g sample	€53.05
U-XRF10*	Ore grade U assay (0.01%-15%). 2g sample	€21.20
U-XRF15b	Ore grade U assay (0.01%- 51%). Fusion with oxidising flux. 0.5g sample	€37.10

^{*}For samples with >4% sulphide choose method U-XRF15b.

Copper Mineral Selective Leaches

These methods may be performed alone or in sequence to semi-quantitatively identify potential recovery by various ore processing methods. ALS can also provide custom methods based on metallurgical requirements.

CODE	AN	IALYTES & RANGES (%)	DESCRIPTION	PRICE PER SAMPLE
Cu-AA04	Cu	0.01-10	Citric acid leach and AAS finish. 0.25g sample	€14.50
Cu-AA05	Cu	0.001-10	Sulphuric acid leach and AAS finish. 1g sample	€14.50
Cu-AA07n	Cu	0.001-100	Sulphuric acid/Na sulphite leach and AAS finish. 1g sample	€14.50
Cu-AA08q	Cu	0.001-100	Sulphuric acid/ferric sulphate leach and AAS finish. 1g sample	€15.70
Cu-AA17	Cu	0.001-10	Cyanide leach and AAS finish. 2g sample	€21.40
Cu-PKG06LI	Cu	Various	Sequential leach for oxide, sulphide and residual Cu. Various options available. 1g sample	€49.20

Total Copper


Aqua regia is an effective solvent for copper oxides and sulphides, but copper occurring with other commodities like molybdenum can be analysed by four acid digestion for consistency across data sets.

CODE	ANALYTES	& RANGES (%)	DESCRIPTION	PRICE PER SAMPLE
Cu-ICP41	Trace Cu	1-10,000 ppm	Aqua regia digestion and ICP finish. 0.5g sample	€7.40
Cu-ICP61	Trace Cu	1-10,000 ppm	Four acid digestion and ICP finish. 0.25g sample	€10.20
Cu-OG46	Cu Assay	0.001-50	Aqua regia digestion and ICP finish. 0.4g sample	€12.70
Cu-OG62	Cu Assay	0.001-50	Four acid digestion and ICP finish. 0.4g sample	€15.55
Cu_SCR21	Native Cu	0.01-100	Screen 1kg sample to 100 microns, duplicate assay on 0.25g of undersize fraction and assay of entire oversize fraction by four acid digestion and AAS finish.	€145.20
Cu-VOL61	Cu	0.01.100	HNO ₃ -HCI-HF-H ₂ SO ₄ acid digestion	€49.15
Cu-CON02	NO2 Concentrate 0.01-100		followed by titration. Cu-CON02 performed in duplicate. 2g sample	€91.05

Chromite and Manganese Ores

The elements listed are reported by default, but others are available if they are significant in your deposit. Loss on Ignition (LOI) is an important component of the total analysis.

CODE	ANA	LYTES & RA	PRICE PER SAMPLE						
	Al ₂ O ₃	0.01-100	Fe ₂ O ₃	0.01-100	Na ₂ O	0.01-10	TiO ₂	0.01-30	
ME_XRF26s	BaO	0.01-66	K ₂ O	0.01-15	P ₂ O ₅	0.01-46	Total	0.01-110	
0.7g sample	CaO	0.01-60	MgO	0.01-50	SO ₃	0.01-34			€60.95 LOI included as part of
	Cr ₂ O ₃	0.01-60	MnO	0.01-80	SiO ₂	0.05-100			this procedure
OA-GRA05x	Loss	n Ignition			Furnace or Thermogravimetric Analyser				
ME-GRA05	1g san	nple			(TGA)				

Iron Ore Analysis

Lithium borate fusion and XRF finish is the industry method of choice for the analysis of oxide iron ores. Single or multitemperature LOI is available, customisable as required.

CODE	ANAL	YTES & RA	NGE	S (%)			DESCRIPTION	PRICE PER SAMPLE
	Al ₂ O ₃	0.01-100	K ₂ O	0.001-6.3	Sn	0.001-1.5		
	As	0.001-1.5	MgO	0.01-40	Sr	0.001-1.5		
ME_XRF21u	Ba	0.001-10	Mn	0.001-25	TiO ₂	0.01-30		
(unnormalised)	CaO	0.01-40	Na ₂ O	0.005-8	V	0.001-5		
ME_XRF21n	CI	0.001-6	Ni	0.001-8	Zn	0.001-1.5	Fused disc XRF.	€62.15 LOI included as part of this procedure
(normalised)	Со	0.001-5	Р	0.001-10	Zr	0.001-1		
0.7g sample	Cr ₂ O ₃	0.001-10	Pb	0.001-2	Total	0.01-110		
- '	Cu	0.001-1.5	S	0.001-5				
	Fe	0.01-74.8	SiO ₂	0.01-100				
OA-GRA05x ME-GRA05	Loss or 1g sam	_		Furnace or Thermogravimetric Analyser (TGA)				

Davis Tube Recovery

ALS recommends discussion to determine optimum protocol for your particular ore type. Grind curve confirmation tests, laser sizing, cyclosizing and wet screening are also available.

CODE	DESCRIPTION	PRICE PER SAMPLE
DTR_PREP	Multi-stage sieving and pulverising.	€66.00
DTR_FeRec	DTR iron recovery.	By Quotation
ME_XRF21h/c/t	XRF analysis on various DTR fractions (head, concentrate, tailing). 0.7g sample each	€62.15 each fraction
OA-GRA05xh/xc/xt	Loss on Ignition reported as part of this method.	
Fe-VOL05	Ferrous iron by titration (FeO; 0.01-100%). 1g sample	€29.85
MAG-DTR	Recovery of magnetic fraction by DTR	€43.30
MAG-SUS	Magnetic susceptibility.	€19.00

^{*}Note: These methods are not suitable for samples with base or precious metals mineralisation.

Bauxite Analysis

XRF is the industry-standard analytical method for bauxite analysis. Results are reported on a dry weight (110°C) basis by default. Additional characterisation methods such as organic carbon, reactive silica and available alumina comply fully with CETEM performance criteria. Multi-screen sizing to determine the optimum screen size for recovery and subsequent wet beneficiation are also available.

CODE	ANA	LYTES & R	ANGE	S (%)		DESCRIPTION	PRICE PER SAMPLE	
	Al ₂ O ₃	0.01-100	MgO	0.01-40	SrO	0.01-1.5		
ME_XRF13u	BaO	0.01-10	MnO	0.01-31	TiO ₂	0.01-30		
(unnormalised)	CaO	0.01-40	Na ₂ O	0.01-5.3	V ₂ O ₅	0.01-8	Fused disc XRF.	
ME XRF13n	Cr ₂ O ₃	0.01-10	P ₂ O ₅	0.01-23	Zn	0.01-1.6	0.7g sample.	€62.15
(normalised)	Fe ₂ O ₃	0.01-100	SiO ₂	0.05-100	ZrO ₂	0.01-1.5		LOI included as part of
	K ₂ O	0.01-6.3	SO ₃	0.01-12.5	Total	0.01-110		this procedure
OA-GRA05x ME-GRA05	Loss o	on Ignition mple				Furnace or Thermogravimetric Analyser (TGA)		
C-IR17	decom	ipose and e n is then ana -100%.	volve c	on of HCI (5 arbonates a by induction	s CO ₂ .	Residual	TOC by Combustion.	€33.20
ME-LICP01	Standa tempe	ard digestion ratures, cau ratio may b	n temp stic str	able Alumina erature 145° rength and s ested by the	°C. Alte ample,	ernative /caustic	Microwave digestion, chemical separation and ICP- AES analysis.	€35.55
ME-LICP02	digestic caustic	on temperat strength an ted by the cl	ure 235 d samp	le Alumina, C °C. Alternativ le/caustic w	ve temp	Microwave digestion, chemical separation and ICP- AES analysis.	€39.15	
*Si-NIR07	Kaolini	tic Silica, O.	4%-100)%. 2 g samp	ole	Fourier Transform infrared (FT-NIR).	€6.00	

^{*}Si-NIR07 requires calibration to be set up with multiple samples from the same deposit that have been analysed by an alternative technique for Kaolinitic Silica to set up a chemometric algorithm.

Nickel Laterite

The elements listed are reported by default, but others are available if they are significant in your deposit. Loss on Ignition (LOI) is an important component of the total analysis.

CODE	ANA	LYTES & R	ANGE	S (%)		DESCRIPTION	PRICE PER SAMPLE				
	Al ₂ O ₃	0.01-100	K ₂ O	0.01-6.3	Pb	0.005-1.8					
ME_XRF12u* (unnormalised)	CaO	0.01-40	MgO	0.01-50	SiO ₂	0.05-100					
(dimorniaised)	Со	0.001-7	MnO	0.005-30	TiO ₂	0.01-30	Frank dian VDF	€62.15 LOI included as part of			
ME_XRF12n*	Cr ₂ O ₃	0.005-10	Na ₂ O	0.01-5.3	Zn	0.001-1.6	Fused disc XRF.				
(normalised) 0.7g sample	Cu	0.001-1.6	Ni	0.005-7.86	Total	0.01-110					
on g campic	Fe ₂ O ₃	0.01-100	P ₂ O ₅	0.005-23				this procedure			
OA-GRA05x ME-GRA05	Loss o	on Ignition mple				Furnace or Thermogravimetric Analyser (TGA)					

^{*}Scandium may be added for an additional cost.

Phosphates

The elements listed are reported by default, but others are available if they are significant in your deposit. Loss on Ignition (LOI) is an important component of the total analysis.

CODE	ANA	LYTES & R	ANGE:	s (%)		DESCRIPTION	PRICE PER SAMPLE	
	Al ₂ O ₃	0.01-100	MgO	0.01-50	SiO ₂	0.01-100		
ME_XRF24*	CaO	0.01-60	MnO ₂	0.01-48	TiO ₂	0.01-30	Fused disc XRE	
0.7g sample	Fe ₂ O ₃	0.01-100	Na ₂ O	0.01-11	Total	0.01-110	rused disc XRF.	€62.15 LOI included as part of
	K ₂ O	0.01-10	P ₂ O ₅	0.01-50				
OA-GRA05x ME-GRA05	Loss 1g sa	on Ignition mple				Furnace or Thermogravimetric Analyser (TGA).	this procedure	

^{*}Fluorine may be added for an additional cost.

Potash

This package is designed for potash exploration to report total chemical composition of samples as well as the proportion of analytes that can be leached with water.

ME-XRF26k is a fusion-XRF method that reports total content where ME-ICP03k is a water-leach method that reports soluble elements. OA-GRA04k provides the percentage of residue insoluble in water using a gravimetric method.

CODE	ANA	ALYTES & RANGES	s (%)				PRICE PER SAMPLE
	Al ₂ O ₃	0.01-100	Fe ₂ O ₃	0.01-100	P ₂ O ₅	0.01-46	
	BaO	0.01-66	K ₂ O	0.01-65	SO ₃	0.01-71	
ME-XRF26K	CaO	0.01-60	MgO	0.01-50	SiO ₂	0.05-100	
	CI	0.01-65	MnO	0.01-39	SrO	0.01-1.5	€71.00
	Cr ₂ O ₃	0.01-10	Na ₂ O	0.01-55	TiO ₂	0.01-30	ME-POTPKG Sold only as a
OA-GRA05x	LOI	0.01-100					complete package
ME IODON	Ca	0.01-25	K	0.01-55	Na	0.01-42	, , , , , , , , , , , , , , , , , , ,
ME-ICP03K	Fe	0.01-50	Mg	0.01-25	S	0.01-30	
OA-GRA04K		Water Insoluble		0.5-100			

Aqua Regia Overlimit Methods

Aqua regia is a powerful solvent for sulphides, silver and base metals.

CODE	AN	ALYTES & RA		PRICE F	PER SAMPLE					
()	Ag	1-1,500ppm	Со	0.0005-30	Mn	0.01-60	Pb	0.001-20	€9.80	
(+)-OG46 0.4g sample	As	0.001-60	Cu	0.001-50	Мо	0.001-10	S	0.01-10	+€2.90	/element
0.49 sample	Cd	0.001-10	Fe	0.01-100	Ni	0.001-30	Zn	0.001-30		

This method may be triggered as an overrange method automatically on multi-element geochemistry packages.

Four Acid Overlimit Methods

Four acid digestion breaks down most silicates and all but the most resistive minerals.

CODE	AN	IALYTES & RA	PRICE PER SAMPLE						
	Ag	1-1,500ppm	Со	0.0005-30	Mg	0.01-50	Pb	0.001-20	
(+)-OG62	As	0.001-30	Cr	0.002-30	Mn	0.01-60	S	0.01-50	€12.65
0.4g sample	Bi	0.001-30	Cu	0.001-50	Мо	0.001-10	Zn	0.001-30	+€2.90 /element
	Cd	0.001-10	Fe	0.01-100	Ni	0.001-30			

This method may be triggered as an overrange method automatically on multi-element geochemistry packages.

Titration Methods

Certain ore deposits naturally have extremely high (>30%) base metal content over short intervals. Specialised digestions and classical chemistry methods are required to analyse these samples.

CODE	AN	IALYTES & RANGES (%)	DESCRIPTION	PRICE PER SAMPLE
Cu-VOL61	Cu	0.01-100	Cu by Titration. 0.5g sample	€49.15
Zn-VOL50	Zn	0.01-100	Zn by Titration. 1g sample	€28.05
Pb-VOL70	Pb	0.01-100	Pb by Titration. 1g sample	€42.15
Fe-VOL51	Fe	0.01-100	Total Fe in Concentrates by titration. 1g sample	€50.25
Fe-VOL05	FeO	0.01-100	Ferrous Iron (FeO) by titration. 1g sample	€29.85

Sodium Peroxide Fusion & ICP-AES

Na₂O₂ fusions are used for sulphides, arsenides, chromite, rutile, ilmenite and titanite. This selection is designed for nickel sulphides, but elements are also available individually.

CODE	ΑN	IALYTES & R	ANC	GES (%)	PRICE PER SAMPLE				
	Al	0.01-50	Cr	0.01-60	Mg	0.01-30	S	0.01-60	€43.30 full package
ME-ICP81	As	0.01-10	Cu	0.002-50	Mn	0.01-50	Si	0.1-50	or €14.20
0.2g sample	Ca	0.05-50	Fe	0.05-70	Ni	0.002-30	Ti	0.01-50	+ €2.90 /element
	Со	0.002-30	Κ	0.05-50	Pb	0.01-30	Zn	0.002-60	

Intermediate **Level Oxidising** Digestion

A strong oxidising digestion utilising ${\rm HNO_3}$, ${\rm KClO_3}$ and ${\rm HBr}$ with aqua regia is applicable to basemetal ores and particularly suitable for massive sulphides.

CODE	AN	ALYTES & RA		PRICE PER SAMPLE					
	Ag	1-1500ppm	Со	0.001-20	Mn	0.005-50	S	0.05-50	
	As	0.005-30	Cu	0.001-40	Мо	0.001-10	Sb	0.005-100	
ME-ICPORE	Bi	0.005-30	Fe	0.01-100	Ni	0.001-30	TI	0.005-1	€28.60
	Ca	0.01-50	Hg	8-10000ppm	Р	0.01-20	Zn	0.002-100	
	Cd	0.001-10	Mg	0.01-50	Pb	0.005-30			

Oxidising Fusion & XRF Finish

Samples are analysed by XRF following a lithium borate fusion with the addition of strong oxidising agents to decompose sulphide-rich ores.

Other elements are available to report on request. LOI may be optionally added to this method, but it is not used to normalise results.

CODE	ANA	ALYTES & RA	NGES	(%)					PRICE PER SAMPLE
	Al ₂ O ₃	0.01-100	Fe	0.01-75	P ₂ O ₅	0.01-25	Th	0.002-5	
	As	0.01-10	HfO ₂	0.01-10	Pb	0.005-20	TiO ₂	0.01-30	
	BaO	0.01-66	K ₂ O	0.01-6.3	Rb	0.005-5	U	0.001-5	
	Bi	0.01-5	La ₂ O ₃	0.01-50	S	0.01-20	V	0.01-5.6	
ME-XRF15b* 0.5g sample	CaO	0.01-40	MgO	0.01-40	Sb	0.005-20	W	0.001-15.9	€37.10
0.5g sample	CeO2	0.01-50	Mn	0.01-30	SiO ₂	0.01-100	Zn	0.005-20	+ €3.95 /element
	Со	0.01-7	Мо	0.005-2	Sn	0.005-20	Zr	0.01-20	
	Cr	0.01-10	Nb	0.005-20	Sr	0.01-5			
	Cu	0.005-20	Ni	0.005-20	Ta	0.002-16.4			
OA-GRA05x	Loss	on Ignition**		Furnace or Th	ermog	€7.50			
ME-GRA05	LU33	orrigination		1g sample					+ €4.55 /temperature

^{*}Na is not reportable due to the oxidising flux used in sample preparation. **LOI is required as part of the ME-XRF15b method.

Base Metal Concentrates By XRF

Samples are analysed by XRF following a lithium borate fusion with the addition of strong oxidising agents to decompose sulphide concentrates.

Other elements are available to report on request. LOI may be optionally added to this method, but it is not used to normalise results.

CODE	ANA	ALYTES & RANGES	(%)				PRICE PER SAMPLE
	Al ₂ O ₃	0.01-100	MgO	0.01-40	Sn	0.01-79	
	As	0.01-10	Mn	0.01-30	Ta	0.01-41	
	Ва	0.01-50	Мо	0.01-60	TiO ₂	0.01-50	
	Bi	0.01-5	Nb	0.01-35	V	0.01-5.6	
ME-XRF15c*	CaO	0.01-40	Ni	0.01-50	WO ₃	0.01-100	€46.80
0.25g sample	Со	0.01-7	Р	0.01-10	Zn	0.01-50	+ €3.95 /element
	Cr	0.01-10	Pb	0.01-32	Zr	0.01-20	
	Cu	0.01-50	S	0.01-40	Total	0.01-110	
	Fe	0.01-75	Sb	0.01-80			
	K ₂ O	0.01-6.3	SiO ₂	0.01-100			
OA-GRA05x	Loss	on Ignition**		Furnace or Thermogr	tric Analyser (TGA)	€7.50	
ME-GRA05	LUSS	orrigilition		1g sample	+ €4.55 /temperature		

^{*}Na is not reportable due to the oxidising flux used in sample preparation.

^{**}LOI is required as part of the ME-XRF15c method.

Whole Rock Analysis, Lithogeochemistry Sulphur and Carbon

The investigation of geological and ore forming processes is enhanced by targeted lithogeochemical analyses that are often carried out on a subset of samples during a thorough geochemical program. They are used to fully characterise rock type, along with trace element changes due to metamorphism, alteration and mineralisation. As there is no single analytical method that can fully define the full range of elements that are required for effective lithogeochemical investigations, ALS offers packaged combinations of analytical methods most appropriate for every element and designed to provide comprehensive information for, essentially, complete rock characterisation.

A wide variety of sulphur and carbon minerals and compounds are often found associated with ore deposits. These minerals can impact ore processing and how waste can be stored during mining. Identifying what form these elements are present in has important implications for ore and waste characterisation. These methods are also powerful tools when combined with large geochemical data sets for geometallurgy investigations.

Please submit at least four times the nominal sample weight for efficient service.

Whole Rock **Analysis**

Both X-Ray fluorescence (XRF) and ICP-AES instrument finishes can be used effectively for the major rock-forming elements following a fusion. These methods are not suitable for samples with base or precious metals mineralisation.

Specific commodities such as iron ore, bauxite, and base metal sulphides should be analysed with packages designed for those sample types. Please see the Ores & Commodities section for more whole rock analysis options.

Trace Elements
by Li Borate
Fusion

A lithium borate fusion prior to acid dissolution and ICP-MS analysis provides the most quantitative analytical approach for a broad suite of trace elements. Options for adding the whole rock elements from an ICP-AES analysis on the same fusion, or base metals from a separate four acid digestion, are available.

Complete Characterisation **Packages**

By combining a number of methods into one cost effective package, a complete sample characterisation is obtained. These packages combine whole rock analysis, trace elements by fusion, aqua regia digestion for the volatile trace elements, carbon and sulphur by combustion analysis, and several detection limit options for the base metals.

Other method combinations are available for complete characterisation. Please enquire with your local client services team for more information.

These packages are suitable only for unmineralised samples. To add gold analysis, please see the Precious Metals section.

Minimum sample size is 10g.

CODE	AN	ALYTES 8	RAN	DESCRIPTION	PRICE PER SAMPLE					
	Al ₂ O ₃	0.01-100	Fe ₂ O ₃	0.01-100	Na ₂ O	0.01-10	SrO			
ME_XRF26*	BaO	0.01-66	K ₂ O	0.01-15	P ₂ O ₅	0.01-46	TiO ₂	0.01-30	Fused disc XRF,	020.05
2g sample	CaO	0.01-60	MgO	0.01-50	SO ₃	0.01-34	LOI	0.01-100	LOI by furnace	€36.05
		0.01-10							01 10/1	

*For unmineralised samples with moderate sulphide content, please request ME_XRF06. For mineralised and/or high sulphide content >4%, please request ME-XRF15c. Performed on dried sample therefore expected to report slightly higher than ME_XRF06.

CODE	CODE ANALYTES & RANGES (%)									PRICE PER SAMPLE
	Al ₂ O ₃	0.01-100	Fe ₂ O ₃	0.01-100	Na ₂ O	0.01-100	TiO ₂	0.01-100	Fused bead,	
ME_ICP06*	BaO	0.01-100	K ₂ O	0.01-100	P ₂ O ₅	0.01-100	LOI	0.01-100	acid digestion	020.05
2g sample	CaO	0.01-100	MgO	0.01-100	SiO ₂	0.01-100			and ICP-AES. LOI by furnace	€36.05
	Cr.O.	0.002-100	MnO	0.01-100	SrO	0.01-100			or TGA	

*For mineralised and/or high sulphide content >4%, please request ME-XRF15c. Both the ME_XRF26 and ME_ICP06 packages include LOI by furnace or TGA.

CODE	ΑI	NALYTES 8	RA	NGES (ppr	n)				DESCRIPTION	PRICE PER SAMPLE
	Ba 0.5-1	0.5-10000	Gd	0.05-1000	Rb	0.2-10000	Ti	0.01-10%		
	Се	0.1-10000	Hf	0.05-10000	Sc	0.5-500	Tm	0.01-1000		
	Cr	5-10000	Но	0.01-1000	Sm	0.03-1000	U	0.05-1000		€38.70
ME-MS81™	Cs	0.01-10000	La	0.1-10000	Sn	0.5-10000	V	5-10000	Fused bead,	
0.1g sample	Dy	0.05-1000	Lu	0.01-1000	Sr	0.1-10000	W	0.5-10000	acid digestion and ICP-MS	
	Er	0.03-1000	Nb	0.05-2500	Та	0.1-2500	Υ	0.1-10000	u.iu.iu i.u	
	Eu	0.02-1000	Nd	0.1-10000	Tb	0.01-1000	Yb	0.03-1000		
	Ga	0.1-1000	Pr	0.02-1000	Th	0.05-1000	Zr	1-10000		
ME-MS81d™		mbination o	€52.30							
	Ag	0.5-100	Со	1-10000	Мо	1-10000	TI	10-10000	Four acid	€8.95
ME-4ACD81	As	5-10000	Cu	1-10000	Ni	1-10000	Zn	2-10000	digestion and	Add on to borate
0.25g sample	Cd	0.5-1000	Li	10-10000	Pb	2-10000			ICP-AES	fusion methods only

CODE	ANA	LYTES & RA	NGES	(ppm)					PRICE PER SAMPLE
	SiO ₂	0.01-100%	MgO	0.01-100%	TiO ₂	0.01-100%	BaO	0.01-100%	
ME-ICP06	Al ₂ O ₃	0.01-100%	Na ₂ O	0.01-100%	MnO	0.01-100%	LOI	0.01-100%	
ME-ICPU6	Fe ₂ O ₃	0.01-100%	K ₂ O	0.01-100%	P ₂ O ₅	0.01-100%			
	CaO	0.01-100%	Cr ₂ O ₃	0.002-100%	SrO	0.01-100%			
ME-IR08	С	0.01-50%	S	0.01-50%					
	Ва	0.5-10000	Gd	0.05-1000	Pr	0.02-1000	Tm	0.01-1000	
	Се	0.1-10000	Ge	0.5-1000	Rb	0.2-10000	U	0.05-1000	
	Cr	5-10000	Hf	0.05-10000	Sm	0.03-1000	V	5-10000	Sold only as complete packages
ME MOOITM	Cs	0.01-10000	Но	0.01-1000	Sn	0.5-10000	W	0.5-10000	
ME-MS81™	Dy	0.05-1000	La	0.1-10000	Sr	0.1-10000	Υ	0.1-10000	CCP-PKG01 €88.45
	Er	0.03-1000	Lu	0.01-1000	Ta	0.1-2500	Yb	0.03-1000	CCP-PKG03 €95.35
	Eu	0.02-1000	Nb	0.05-2500	Tb	0.01-1000	Zr	1-10000	Includes ME-XRF26 instead of ME-ICP06
	Ga	0.1-1000	Nd	0.1-10000	Th	0.05-1000			Instead of ME-ICFO0
	As	0.1-250	In	0.005-250	Se	0.2-250			
ME-MS42TM*	Bi	0.01-250	Re	0.001-250	Те	0.01-250			
	Hg	0.005-25	Sb	0.05-250	TI	0.02-250			
	Ag	0.5-100	Cu	1-10000	Ni	1-10000	Zn	2-10,000	
ME-4ACD81	Cd	0.5-1000	Li	10-10000	Pb	2-10000			
	Со	1-10000	Мо	1-10000	Sc	1-10000			
	Ag	0.01-100	Cu	0.2-10000	Ni	0.2-10000	Zn	2-10,000	CCP-PKG05 €103.05
ME-MS61™	Cd	0.02-1000	Li	0.2-10000	Pb	0.5-10000			Includes ME-MS61™ instead of
	Со	0.1-10,000	Мо	0.05-10000	Sc	0.1-10000			ME-4ACD81
	Ag	0.002-100	Cu	0.02-10000	Ni	0.08-10000	Zn	0.2-10,000	CCP-PKG06 €119.35
ME-MS61L™	Cd	0.005-1000	Li	0.2-10000	Pb	0.01-10000			Includes ME-MS61L™ with super trace
	Со	0.005-10000	Мо	0.02-10000	Sc	0.01-10000			detection limits.

^{*}Other customisable options such as super trace detection limits ME-MS42L™ available for substitution of ME-MS42™

Sulphur Methods

Accurate sulphur speciation can be crucial to early identification of recovery and environmental issues on many projects. Variations on the most common speciation methods can be implemented to suit your project's specific mineralogy; please contact client services in your region for more information.

CODE	ANALYTES 8	& RANGES (%)	DESCRIPTION	PRICE PER SAMPLE
S-IR08	S (Total)	0.01-50	Total sulphur by induction furnace/IR 0.1g sample	€16.85
S-GRA07	S (Elemental)	0.01-100	Solvent leach with remaining elemental sulphur analysed by gravimetric finish. 3g sample	€37.90
S-GRA06a	S (Sulphate)	0.01-50	HCI (15%) leach of soluble sulphates, precipitation as barium sulphate and gravimetric finish. Note: little to no dissolution of barite/celestite. 1g sample	€30.90
S-IR06a	S (Sulphide)	0.01-50	HCI (25%) leach to remove sulphates; induction furnace/IR. Note: little to no dissolution of barite/celestite. 0.1g sample	€24.70
S-GRA06	S (Sulphate)	0.01-40	NaCO ₃ leach of sulphates, precipitation as barium sulphate and gravimetric finish. 1g sample	€35.05
S-IR07	S (Sulphide)	0.01-50	NaCO ₃ leach of sulphates, induction furnace/IR. 0.1g sample	€36.05

Carbon Methods

Carbon has important metallurgical and environmental implications for many types of mineral deposits. Carbonates may consume acid, impacting leach process design and mine waste remediation, while preg robbing by organic carbon can interfere with the cyanidation of gold and silver ores.

CODE	ANALYTES 8	RANGES (%)	DESCRIPTION	PRICE PER SAMPLE
C-IR07	C (Total)	0.01-50	Total carbon by induction furnace/IR. 0.1g sample	€16.85
C-IRO6a	C (Non-Carbonate)	0.01-50	HCI (25%) leach at high temperature for 1 hour to expel carbonates as CO ₂ , residue analysed for C by induction furnace/IR. 0.1g sample	€24.70
C-GAS05	CO ₂ (Carbonate)	0.2-50	HCIO ₄ digestion and CO ₂ coulometer. 0.1g sample	€24.20
C-IR18	C (Graphite)	0.02-50	HCI (50%) leach of carbonates, roasting to remove organic carbon, induction furnace/IR. 0.1g sample	€42.20
C-IR17	C (Non-Carbonate)	0.02-100	Slow and repeated addition of HCI (50%) to decompose and evolve carbonates as CO ₂ . Residual carbon is then analysed by induction furnace/IR. 0.1g sample	€33.20
C-CAL15	C (Carbonate)	0.02-100	Carbonate carbon calculated by difference. Requires C-IR07, C-IR17.	€0.00

Sulphur and Carbon Packages

These elements are often determined together, so ALS provides several economic packages for convenience.

CODE	ANALYTES	& RANGES (%)	DESCRIPTION	PRICE PER SAMPLE
ME-IR08	C (Total) S (Total)		Total carbon and sulphur by induction furnace/IR. 0.1g sample	€23.55
ME-IRO6a	C (Organic) S (Sulphide)*		Non-Carbonate carbon and sulphide sulphur by HCI (25%) leach to remove carbonates and sulphates, induction furnace/IR. 0.1g sample	€34.55

^{*}Sulphide sulphur may be overstated if $BaSO_4$ or $SrSO_4$ are present as they are insoluble with the HCl leach.

Concentrates and ARD A mine in development or production needs a specialised set behaviour. These include geochemical methods designed for concentrates and high-grade samples; and those used to monitor process metallurgy and umpire assay of bulk concentrates. In the following section methods developed

of analyses for mine products, and to characterise mine waste to determine a material's acid mine drainage potential are also outlined. These methods cover a range of requirements which will vary between regions and mineralisation types.

Please submit at least four times the nominal sample weight for efficient service.

Various Elements in Concentrates

All control assays are overseen by experienced certified assayers and analysed in duplicate at a minimum to assure quality. Umpire assays are also available – please enquire.

Precious metals in concentrates and bullion are found in the Precious Metals section.

CODE	ANA	ALYTES & RANGES (%)	DESCRIPTION	PRICE PER SAMPLE
(+)-CON02	Zn Cu Pb	Mo Co Ni	Appropriate digestion and titration or gravimetric finish. 4g sample	€91.05 /each
As-CON01	As	0.01-15	Four acid digestion and AAS finish. 1g sample	€91.05
Hg-CON01	Hg	1-10,000ppm	HCl digestion and ICP-AES finish. 1g sample	€91.05
F-CON01	F	20-20,000ppm	KOH fusion and ion selective electrode. 0.2g sample	€110.00

⁺ Add element symbol as prefix to method code. More elements are available. Please enquire.

High-Grade Multi-Element **Analysis**

This is a four acid multi-element procedure specifically designed for major, minor and trace elements in high-grade samples and concentrates. Extra care is taken with senior staff reviewing the results in detail.

Aqua regia/ICP-MS and oxidising fusion/XRF options are also available.

CODE	AN	ALYTES & RA	NGE	S (ppm)					PRICE PER SAMPLE
	Ag	0.1-1,000	Fe	0.02%-100%	Ni	2-100,000	Th	2-5,000	
	Al	0.02%-100%	Ga	0.5-5,000	Р	100-100,000	Ti	0.01%-100%	
	As	2-100,000	Ge	0.5-5,000	Pb	5-100,000	TI	0.2-5,000	
	Ва	50-100,000	Hf	1-5,000	Rb	1-5,000	U	1-10,000	
	Ве	0.5-10,000	In	0.05-2,500	Re	0.02-500	V	5-100,000	_
	Bi	0.1-100,000	Κ	0.02%-100%	S	0.05%-10%	W	1-100,000	
ME-MS61c [™] 0.4g sample	Са	0.05%-100%	La	5-5,000	Sb	0.5-10,000	Υ	1-5,000	€281.05
0.49 sample	Cd	0.2-5,000	Li	2-5,000	Sc	1-10,000	Zn	20-100,000	
	Се	0.1-5,000	Mg	0.02%-100%	Se	10-10,000	Zr	5-5,000	
	Со	1-100,000	Mn	10-100,000	Sn	2-5,000			
	Cr	10-100,000	Мо	0.5-100,000	Sr	2-100,000			
	Cs	0.5-5,000	Na	0.02%-100%	Ta	0.5-1,000			
	Cu	2-100,000	Nb	1-5,000	Те	0.5-5,000			

Industrial **Minerals**

Industrial minerals commonly have highly refractory components requiring aggressive digestions. These methods are designed to completely dissolve the analytical sub-sample, leaving no inhomogenous residual material behind.

CODE	ORE/PRODUCT	ANALYTES	DESCRIPTION	PRICE PER SAMPLE
ME_XRF26	Cementitious Materials	Al ₂ O ₃ , CaO, Fe ₂ O ₃ , K ₂ O, MgO, MnO, Na ₂ O, SiO ₂ , SO ₃ , TiO ₂ and LOI	Fusion, XRF 0.7g sample	€36.05
ME_XRF26s	Chromite and Manganese Ore	$\begin{array}{l} {\rm Al_2O_3, BaO, CaO, Cr_2o_3 Fe_2O_3, K_2O,} \\ {\rm MgO, MnO, Na_2O, P_2O_5, SO_3, SiO_2,} \\ {\rm TiO_2 and LOI} \end{array}$	Fusion, XRF 0.33g sample	€60.95
ME-ICP86	Limestone, Dolomite, Magnesite, Magnesia	CaO, MgO, Al ₂ O ₃ , Fe ₂ O ₃ , SiO ₂ , LOI	Fusion, ICP-AES 0.1g sample	€49.60

Acid-Base Accounting

Acid-base accounting (ABA), also called static testing, calculates a net neutralisation potential (NNP) representing the ability of a body of rock to produce acid rock drainage or to neutralise free acid.

The choice of package will depend on the method of determining the neutralising potential that is required by law in your region, this information can be obtained from your local regulatory agency.

Minimum sample size for all ABA packages is 100g.

Sulphide is determined by calculation in these packages. If you would prefer sulphide determined by analysis, add A to the package code. (additional cost.)

PARAMETERS	ABA-PKG01	ABA-PKG04	ABA-PKG05	ABA-PKG06E*
1711011112112110	(M/S)	(M/S)	(M/S/B)	
Net Neutralisation Potential (NNP)	√	$\sqrt{}$	√	
Maximum Potential Acidity (MPA)	\checkmark	√	\checkmark	
Neutralisation Potential (NP) & Fizz	\checkmark	\checkmark	$\sqrt{}$	
Ratio (NP : MPA)	V	\checkmark	√	
Neutralisation Potential (EN 15875 NP)				√
Acid Potential (EN 15875 AP)				√
Maximum Acid Potential (EN 15875 AP Max)				√**
Neutralisation Potential Ratio (EN 15875 NPR)				\checkmark
Net Neutralisation Potential (EN 15875 NNP)				\checkmark
Paste pH	\checkmark	$\sqrt{}$	√	
Sulphate by ICP				√
HCI-leachable Sulphate		\checkmark	\checkmark	
Total Sulphate (Carbonate Leach)			\checkmark	
Sulphide (calculated)		√	√	√
Sulphide (analysed)	√ * *	√**	√**	
Total Sulphur	V	\checkmark	√	√
Inorganic Carbon (CO ₂)		\checkmark	$\sqrt{}$	
Inorganic Carbon (calculated)				√
Organic Carbon				\checkmark
Total Carbon				√
Sobek Method	\checkmark	\checkmark	\checkmark	
Modified Sobek (M) Option	√	V	√	
Siderite Correction (S) Option	V	V	√	
MEND Method (B) Option			√	
EN 15875 Method Option				√

^{*} meets EU regulations. ** optional parameter. See client services for pricing.

Humidity Cells & Metal Leaching

Tests to quantify metal leaching from mine waste under meteoric conditions can range from simple shake flask analysis to long term column leaches. Many analytical options are possible on the leaches; prices will vary based on analytical package requested.

CODE	DESCRIPTION	PRICE PER SAMPLE
OA-HCTSET	Humidity cell set-up and maintenance fees.	
OA-HCT01	Periodic analysis of humidity cell leachate. Many instrument finishes, particle sizes and sample weights are available; please enquire.	By Quotation

Net Acid Generation

NAG provides a quantitative estimation of the acid that can be generated by mine waste.

CODE	DESCRIPTION	PRICE PER SAMPLE
OA-VOL11	Hydrogen peroxide is used to rapidly oxidise sulphides. NAG is reported in kg $\rm H_2SO_4/tonne$ at pH 4.5 and pH 7.0. 2.5g sample	€140.45

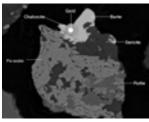
ALS Mineralogy

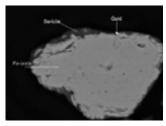
ALS Mineralogy has a market leading position in the range and capabilities of our automated mineralogy equipment, which includes the Mineral Liberation Analyser (MLA), QEMSCAN®, X-Ray Diffraction, TIMA and HyLogger™.

Quantitative mineralogical data are an essential component in a range of applications such as processing mineralogy, plant surveys, ore characterisation, precious metal and trace mineral characterisation, and geometallurgy analyses.

Access to state-of-the art technology and a highly trained technical team ensures that your requirements are met with highquality data fit for your purpose.

Contact us to determine methods and pricing specific for your project.


CODE	ANALYSIS	RANGE OF SERVICE
ВМА	QEMSCAN Bulk Mineral Analysis	Mineral composition, elemental deportment and assay reconciliation.
BMAL	QEMSCAN Bulk Mineral Analysis with Liberation	Mineral composition, estimate of the liberation, elemental deportment and assay reconciliation.
MIN-CORE	MLA Core Plug Analysis plus Images	Mineral list and abundances by X-Ray point counting, with elemental distributions, and calculated assay; plus high-resolution images of entire surface (both greyscale and processed). Suitable for core plugs or thin sections.
MIN-GXMAP	MLA Bulk Mineral and Textural Analysis with X-Ray Mapping	XBSE analysis with additional X-Ray mapping of similar-appearing gangue or minerals of interest to improve grain segmentation (for texturally complex or finely intergrown samples)
MIN-SPL	MLA Sparse phases - Au, Ag, PGE, U minerals etc. present at ppm to ppt levels or losses of minerals of interest to tails	Data for requested minerals only - does not include bulk mineralogy data - Mineral List and relative abundances, elemental distributions, particle size and grain size distributions, mineral liberation, locking and association data, particle image line ups, - includes high resolution photomicrographs of typical minerals of interest.
MIN-XBSE	MLA Bulk Mineral and Textural Analysis	Mineral List and abundances (to <0.5 Wt%), elemental distributions, particle size and grain size distributions, mineral liberation, locking and association data, grade recovery curves, particle image line ups, assay reconciliation includes spread sheet reporting - additional reporting options available.
MIN-XMOD	MLA Bulk Mineral Analysis by X-Ray Point Counting	Mineral List and abundances (to ~0.5-1 Wt%), elemental distributions, chemical assay reconciliation - includes basic spreadsheet reporting.
PMA	QEMSCAN Particle Mineral Analysis	Mineral composition, abundance, liberation, locking, association, elemental deportment and assay reconciliation. Typically includes 4-5 size fractions.
TMS	QEMSCAN Trace Mineral Search	Trace mineral characterisation includes liberation, locking, association and size. Cost is dependent on grade and desired number of grains for analysis.
XRDQ	Quantitative XRD	Fully quantitative XRD, including the quantification of the amorphous material present.
XRDSQ	Semi-quantitative XRD	Mineral abundance, normalised over the crystalline content, excluding the quantification of amorphous material.


All prices are by quotation. Please contact ALS for more information.

Additional reporting options are also available on request. Mineralogical data available from our range of technologies include:

- Mineral species, compositions, and abundances
- Elemental deportment
- Mineral grain and particle size distribution
- · Grain size and grain texture data
- Mineral liberation including association and locking
- Mineral grade and element grade recovery curves
- Colour-coded particle maps and minerals line-ups
- · Annotated high-resolution maps and mineral line-
- SEM backscatter images
- · SEM particle maps
- Mineral X-Ray and wavelength spectra summary
- · XRD analyses of all crystalline materials

Americas

Kamloops

Kamloops BC V1S 1W5 T +1 250 828 6157 F +1 250 828 6159 metallurgy.kamloops@alsglobal.com

Australia

Perth

Western Australia 6021 T +61 8 9344 2416 F +61 8 9345 4688 metallurgy@alsglobal.com

Brisbane

Queensland 4053 T +61 7 3243 7152 mineralogy@alsglobal.com

Quality Management **Systems**

Providing exceptional quality assays to our clients is one of the cornerstones of ALS's business model. We achieve this via a global quality program that has been strategically designed to integrate quality requirements into every process from sample preparation through analysis. It is an integral part of day-to-day activities, involves all levels of ALS staff, and is monitored at top management levels. The global quality program includes interlaboratory test programs and regularly scheduled internal audits that meets all requirements of ISO/IEC 17025:2017 and ISO 9001:2015.

All ALS Geochemistry hub and many multipurpose laboratories are accredited to ISO/IEC 17025:2017 for specific analytical procedures.

The physical sample preparation involving accredited test methods as listed on an analytical laboratory's ISO/IEC 17025:2017 Scope of Accreditation may be performed at that location, or at off-site sample preparation laboratories that are monitored regularly for quality control and quality assurance practices. In certain instances an ISO/IEC accreditation body may allow for these off-site sample preparation facilities to be listed on the laboratory's Scope.

* Please contact us for details regarding ISO/IEC 17025:2017 accreditation and scopes of accreditation; or ISO 9001:2015 certification at individual labs.

ISO/IEC 17025:2017 Accredited Methods in North America*

ISO/IEC 17025:2017 Accredited Methods in Romania*

ISO/IEC 17025:2017 Accredited Methods in Turkey*

ISO/IEC 17025:2017 Accredited Methods in Chile*

ISO/IEC 17025:2017 Accredited Methods in Laos³

ISO/IEC 17025:2017 Accredited Methods and ISO 9001:2015 Registration in Peru*

ISO/IEC 17025:2017 Accredited Methods in Ireland

ISO 9001:2015 Registration in Spain'

LRQ/\ CERTIFIED ISO 9001

ISO/IEC 17025:2017 Accredited Methods and ISO 9001:2015 Registration in Australia

ISO/IEC 17025:2017 Accredited Methods in Zambia*

ISO/IFC 17025:2017 Accredited Methods in South Africa and Ghana^{*}

ISO/IFC 17025:2017 Accredited Methods in

ISO/IEC 17025:2017 Accredited Methods and ISO 9001:2015 Registration in China*

ISO/IFC 17025:2017 Accredited Methods in Mongolia*

ISO/IFC 17025:2017 Accredited Methods in Kazakhstan*

ISO/IFC 17025:2017 Accredited Methods in Russia*

Open Lab™ Initiative

The Open Lab™ Initiative is about enabling complete confidence in the accuracy of data produced by ALS through transparency in the laboratory process.

Through the Open Lab™ Initiative, we provide access to all of your results in perpetuity and the ability to track sample status in real time through Webtrieve™, our on-line interface to laboratory data. Webtrieve $\bar{}^{\text{\tiny{TM}}}$ also displays complete chain of custody audit trails, important QC data, and standard reference material control charts relevant to your samples. Please ask your local laboratory to have a Webtrieve™ account set up for you.

Selected Terms & Conditions

1. Terms and Conditions

Complete Terms and conditions of service are included with each service quotation provided to clients. The following lists some of the key terms and conditions that will be applicable to every quotation for work

2. Provision of Services

- a) The Client acknowledges that it is the Client's sole responsibility to make its own assessment of the suitability for any purpose of the Services, detection limits and confidence intervals inherent in ALS's standard testing methodology, the ALS Report and its contents.
- b) If the Client requires the Services to be performed by specific test method, or requires detection limits and/or confidence intervals different to those inherent in ALS's standard testing methodology, then the Client must instruct ALS of such a variation prior to ALS performing the
- c) ALS may transfer samples within its laboratory network to maximise efficiencies and improve turnaround of the samples. No additional cost will be charged to the client for this service optimisation measure.

3. Fees and Payment

- ALS reserves the right to review prices at any time if significant changes to ALS's costs are incurred that are beyond ALS's control. Such changes may include, but are not limited to, changes in legislative requirements, Client variations to sample numbers, analytes requested turnaround required, or reporting requirements
- b) Payment terms, subject to approved credit, are payment in full, 30 days from the date of invoice (Due Date), unless otherwise agreed in writing prior to the placement of an order or submission of samples.
- c) All prices quoted by ALS are exclusive of GST (or other value added tax if relevant) unless stated otherwise
- d) All fees due and payable after the Due Date (Outstanding Amount) will be subject to the payment of interest at a rate of 1.5% per month of the Outstanding Amount from the Due Date up to and including the date of payment, unless ALS and the Client otherwise agree in writing.
- The Client will indemnify ALS for any fees incurred by ALS to recover the Outstanding Amount, including any solicitor fees, or collection agency fees.

4. Limitation of Liability

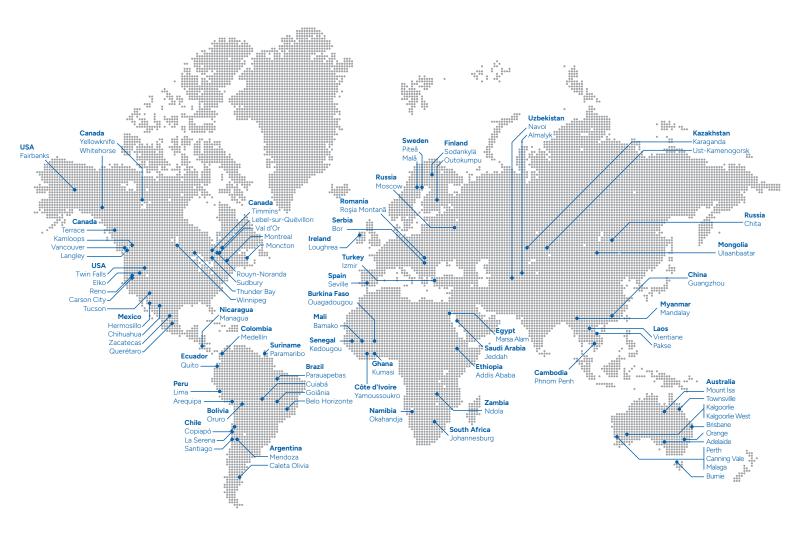
- To the full extent permitted by law, ALS excludes all warranties, terms, conditions or undertakings (Terms). whether expressed or implied, in relation to the Services, the ALS Report, or its contents. Where any legislation implies any Terms in this Agreement that cannot be modified or excluded then, such Terms shall deem to be included. However, to the full extent permitted by law, ALS's liability to the Client for any breach of any Terms that cannot be excluded by law is limited at ALS's option to the re-performance of the Services or the refund of the fee for the Services.
- b) The Client hereby releases and indemnifies and shall continue to release and indemnify ALS, its officers, employees and agents from and against all actions, claims (actual or threatened), proceedings or demands (including any costs and expenses in defending or servicing same) which may be brought against it or them, in respect of any loss (including Consequential Loss), death, injury, illness or damage to persons or property, and whether direct or indirect and in respect of any breach of any industrial or intellectual property rights, howsoever arising out of the use of, reliance on, or benefit of, the Services or any ALS Report, except to the extent that the loss, death, injury, illness or damage to persons or property was directly caused by the negligence, willful acts or omissions of ALS
- c) Notwithstanding any other provision in this Agreement, the cumulative liability of ALS under this Agreement to the Client and any third party is limited for any claim for loss or damage whatsoever, whether arising in tort or contract or any other cause of action, to the value of the Services provided by ALS to the Client.
- The Client acknowledges that during the performance of the Services, any samples supplied by, or on behalf of, the Client or parts thereof may be altered, lost, damaged or destroyed. ALS will not be liable whatsoever to the Client or any third party for any samples so altered, lost, damaged or

5. Termination

ALS may suspend or terminate its obligations under this Agreement if (a) monies payable to ALS by the client are outstanding 60 days or more (unless otherwise agreed) after the date of invoice, (b) other substantial breach by the Client of their obligations under the Agreement, which breach is not remedied within 30 days of written notice from ALS requiring the breach to be remedied, (c) by giving the Client 60 days written notice of ALS's intention to terminate

- b) The Client may terminate its obligations under this Agreement in the event of a substantial breach by ALS of its obligations under the Agreement, which breach has not been remedied within 30 days of written notice from the Client to ALS requiring the breach to be remedied.
- c) If ALS, acting reasonably, suspects that the Client is insolvent or is having difficulties paying its debts as and when they become due, or the Client is insolvent, ALS may give written notice to the Client of ALS's intention to immediately suspend or terminate is obligations under this Agreement.
- d) In the event of termination, ALS is entitled to be paid for all work performed before the date of termination and for any unavoidable commitments entered into by ALS before the

6. Confidential Information


- a) Neither ALS nor the Client will disclose Confidential Information of the other party to any third party without the prior written consent of the other party, unless required by law or the rules of a relevant stock exchange.
- b) ALS and the Client will only use Confidential Information of the other party for the purpose of the supply of the Services.

7. Intellectual Property

- a) All ALS Intellectual Property will remain the property of ALS.
- b) ALS grants to the Client a world-wide, non-exclusive royalty free licence to use ALS Intellectual Property for the purpose agreed to between the Client and ALS to the extent that it is needed for the benefit of the Services
- c) ALS Intellectual Property means all intellectual property and proprietary rights (whether registered or unregistered) owned by ALS prior to performance of the Services, developed by ALS in performance of the Services, or developed by ALS outside of, or after, performance of the Services, and without limitation includes business names, trade or service marks, any right to have information kept confidential, patents, patent applications, drawings discoveries, inventions, improvements, trade secrets, technical data, formulae, databases, know-how, logos, designs, design rights, copyright and similar industrial or intellectual property rights

Please refer to the ALS Website for full Terms and Conditions

Global Geochemistry locations

Our integrated network of over 80 laboratories around the world ensures consistent quality and dependable client service wherever we might meet you.

Our services are available through any one of the many general service laboratories listed on these pages.

We also provide custom services for on-site laboratory and sample preparation facilities, as well as mobile laboratories and sample preparation installations.

ARGENTINA

Caleta Olivia

+54 (9) 2616114701

alsgeo. caleta olivia@alsglobal.com

Mendoza

+54 9 261 722 37 75

alsgeo.mendoza@alsglobal.com

AUSTRALIA

WESTERN REGION csgph@alsglobal.com EASTERN REGION csgbr@alsglobal.com

Adelaide

+61 8 6182 2412

alsgeo.adelaide@alsglobal.com

Brisbane

+61 7 3243 7222

alsgeo.brisbane@alsglobal.com

Burnie

+61 3 6431 6333

alsgeo.burnie@alsglobal.com

Canning Vale

+61 8 9256 6200

alsgeo.canningvale@alsglobal.com

Kalgoorlie

+61 8 9021 1457

alsgeo.kalgoorlie@alsglobal.com

Kalgoorlie West

+61 8 9256 6206

alsgeo.kalgoorliewest@alsglobal.com

Malaga

+61 8 9347 3222

alsgeo.perth@alsglobal.com

Mount Isa

+61 7 4740 1700

alsgeo.mtisa@alsglobal.com

Orange

+61 2 6393 1100

alsgeo.orange@alsglobal.com

Perth

+61 8 9347 3222

alsgeo.perth@alsglobal.com

Townsville

+61747960600

alsgeo.townsville@alsglobal.com

BOLIVIA

Oruro

+591 2527 8235

alsgeo.oruro@alsglobal.com

BRAZIL

Belo Horizonte

+55 31 3045 8400

alsgeo.belohorizonte@alsglobal.com

Cuiabá

+55 65 9 9938 5139

alsgeo.cuiaba@alsglobal.com

Goiânia

+55 62 3088 4800

alsgeo.goiania@alsglobal.com

Parauapebas

+55 94 3346 1500

alsgeo.parauapebas@alsglobal.com

BURKINA FASO

Ouagadougou

+226 2535 6077

alsgeo.ouagadougou@alsglobal.com

CAMBODIA

Phnom Penh

+855 99 434 534

alsgeo.phnompenh@alsglobal.com

CANADA

ClientServicesECAN@alsglobal.com ClientServicesWCAN@alsglobal.com

Kamloops

+12505735700

alsgeo.kamloops@alsglobal.com

Langley

+16047577140

alsgeo.langley@alsglobal.com

Lebel-sur-Quévillon

+1 819 755 3775

alsgeo.lebel@alsglobal.com

Moncton

+15068554269

alsgeo.moncton@alsglobal.com

Montreal

+15145470871

alsgeo.montreal@alsglobal.com

Vancouver

+1 604 984 0221

alsgeo.vancouver@alsglobal.com

Rouvn-Noranda

+1 819 797 2810

alsgeo.rouyn-noranda@alsglobal.com

Sudbury

+1705 560 7225

alsgeo.sudbury@alsglobal.com

Terrace

+1 250 635 3309

alsgeo.terrace@alsglobal.com

Thunder Bay

+18074753329

alsgeo.thunderbay@alsglobal.com

Timmins

+1 705 360 1987

alsgeo.timmins@alsglobal.com

Val d'Or

+1 819 825 0178

alsgeo.valdor@alsglobal.com

Whitehorse

+1 867 633 4746

alsgeo.whitehorse@alsglobal.com

Winnipeg

+1 204 890 2297

alsgeo.winnipeg@alsglobal.com

Yellowknife

+1 867 873 5159

alsgeo.yellowknife@alsglobal.com

CHILE

Copiapó

+56 52 2 543 570

alsgeo.copiapo@alsglobal.com

La Serena

+56 51 267 2792

alsgeo.laserena@alsglobal.com

Santiago

+56 2 2654 6100

alsgeo.santiago@alsglobal.com

CHINA

Guanazhou

+8620 36875966

alsgeo.guangzhou@alsglobal.com

COLOMBIA

Medellín

+57 604 306 9122

alsgeo.medellin@alsglobal.com

ECUADOR

Quito

+593 25130891

alsgeo.quito@alsglobal.com

EGYPT

Marsa Alam

Marsa Alam

+201286506524 alsgeo.marsaalam@alsglobal.com

ETHIOPIA

Addis Ababa

+251 114717299

alsgeo.addisababa@alsglobal.com

FINLAND

Outokumpu

+358 504 152 812

alsgeo.outokumpu@alsglobal.com

Sodankyla

+358505707141

alsgeo.sodankyla@alsglobal.com

GHANA

Kumasi

+233 544 444449

+233 544 444440

alsgeo.kumasi@alsglobal.com

IRELAND

Loughrea +353 91 841 741

alsgeo.loughrea@alsglobal.com

IVORY COAST

Yamoussoukro

+225 0779281892

alsgeo.yamoussoukro@alsglobal.com

KAZAKHSTAN

Karaganda

+7 705 474 72 47

alsgeo.karaganda@alsglobal.com

Ust-Kamenogorsk

+7 705 474 72 47

alsgeo.karaganda@alsglobal.com

LAOS

Pakse

+856 20 2271 1091

alsgeo.pakse@alsglobal.com

Vientiane

+856 2131 3438

alsgeo.vientiane@alsglobal.com

MALI

Bamako

+223 2021 3137

alsgeo.bamako@alsglobal.com

MEXICO

 ${\it Client Services MEX@alsglobal.com}$

Chihuahua

+52 6144 179 728

alsgeo.chihuahua@alsglobal.com

Hermosillo

+52 662 2183319

alsgeo.hermosillo@alsglobal.com

Queretaro

+52 442 6451 241

alsgeo.queretaro@alsglobal.com

Zacatecas

+52 492 768 1474

alsgeo.zacatecas@alsglobal.com

MONGOLIA

Ulaanbaatar

+976 70007667

alsgeo.ulaanbaatar@alsglobal.com

MYANMAR

Mandalay

+95 94 4736 7745

alsgeo.mandalay@alsglobal.com

NAMIBIA

Okahandja

+264 811 504904

alsgeo.okahandja@alsglobal.com

NICARAGUA

Managua

+505 22246093

alsgeo.managua@alsglobal.com

PERU

ServicioalClientePeru@alsglobal.com

Arequipa

+51 54 463649

alsgeo.arequipa@alsglobal.com

Lima

+5115745700

alsgeo.lima@alsglobal.com

ROMANIA

Roșia Montană

+40 258 780 395

alsgeo.rosiamontana@alsglobal.com

RUSSIA

Chita

+7 302 228 30 50

+7 914 801 54 63

als.russia@alsglobal.com

Moscow

+7 495 419 04 74

+7 905 700 29 55

als.russia@alsglobal.com

SAUDI ARABIA

Jeddah

+966 12 636 2111

alsgeo.jeddah@alsarabia.com

SENEGAL

Kedougou

+221 77 182 41 41

alsgeo.Kedougou@alsglobal.com

SERBIA

Bor

+381648243340

alsgeo.bor@alsglobal.com

SOUTH AFRICA

ClientServicesAfrica@alsglobal.com

Johannesburg

+27 11 032 5000

alsgeo.johannesburg@alsglobal.com

SPAIN

Seville

+349 555 13035

alsgeo.seville@alsglobal.com

SURINAME

Paramaribo

+597 453 057

alsgeo.paramaribo@alsglobal.com

SWEDEN

Malå

+46 911 65 800

alsgeo.mala@alsglobal.com

Piteå

+46 911 658 00

alsgeo.pitea@alsglobal.com

TURKEY

Izmir

+90 232 281 71 10

alsgeo.izmir@alsglobal.com

USA

ClientServicesUSA@alsglobal.com

Carson City

+1775 841 6256

alsgeo.carsoncity@alsglobal.com

Flko

+17757382054

alsgeo.elko@alsglobal.com

Fairbanks

+1 907 452 2188

alsgeo.fairbanks@alsglobal.com

Reno

+1775 356 5395

alsgeo.reno@alsglobal.com

Tucson

+1 520 747 3218

alsgeo.tucson@alsglobal.com

Twin Falls

+1 208 738 9943

alsgeo.twinfalls@alsglobal.com

UZBEKISTAN

Almalyk

+998 88 879 6626

alsgeo.almalyk@alsglobal.com

+998 88 879 6626

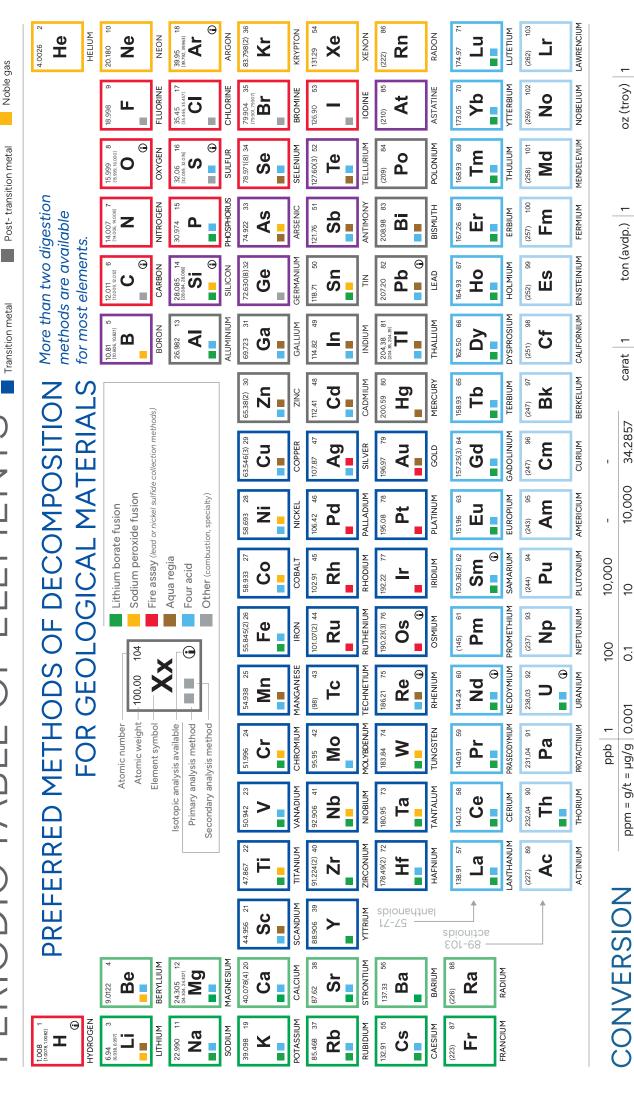
alsgeo.navoi@alsglobal.com

ZAMBIA

Ndola

+260 764 666 999

+260.967 291 198


alsgeo.ndola@alsglobal.com

Alkali metal Alkaline earth metal Transition metal PERIODIC TABLE OF ELEMENTS

Reactive nonmetal

Lanthanide

Actinide

31.1035

D

907.18474

ğ

mg/g | 41.666

0.29167

0.00292

oz/ton 0.00003

FACTORS: